DETEEEREN

PB96-1487€38

LABELLED FORIAL LANGUAGES AND THEIR USES

" DIETRBOVION SPATEVENE A
Approved tor pubiic relecsa
Disribunce {nBmued . 7

STANFORD UNIV., CA

MAY 91

U.S. DEPARTMENT OF COMMERCE
National Technicsal information Service

10970621 042

1.0 GUALITY I SPLCTED 3

BIBL IOGRAPHIC INFORMATION
PB96-148788
Report Nos: ST N-CS-83-982
Title: Labelled Formal Languages and Their Uses.
Date: cMay 91
Authors: D. H. Greene.

performing Organization: Stanford Univ.. CA. Dept. of Computer Science.

Sponsoring Organization: *National Science Foundation. Washington. DC.
Contract Nos: NSF-MSC-83-00984. NSF-IST-820-1926

Type of Report and Period Covered: Doctoral thesis.

NTIS Field/Group Codes: 62B (Computer Software)

Price: PC AO8/MF AO2

Availability: Available from the National Technical Information Service. Springfield.
VA ¢

Number of Pages: 155p

Keywords: *Programming languages. *Formalism, *Grammars. *permutations. Algorithms.
TFees(Mathematics). Computations. String theory. Theses.

Abstract: This research augments formal languages with the machinery necessary to ’
describe labelled combinatorial objects suc as trees. permutations. and networks. The §
most attractive feature of this method of describing combinatorial objects is the :
direct translation to generating functions. Treating the grammar of an ordinary formal #
1angua%e as a set of equations and then solving these equations yields an enumerating &
generating function. This 1s still true of labelled formal languages although the
equations”are _usually difforential rather than rational or algebraic. There are two
promising applications for labelled formal lan ua%es. In the analysis of algorithms
bne often identifies combinatorial quantities that can be described with labelled
formal languages and. using the translation mentioned above. these quantities can be
easily computed. The other application uses Jabelled formal languages to control a
general-purpose system for tne ranking. sequencing. and selection of combinatorial .
objects. Both of these applications demonstrate the value of labelled formal 1anguages §
as a descriptive and analytic tool. (Copyright (c) 1983 by Daniel Hill Greene.) :

o i oo

June 1983 Report No. STAN-CS-83-982
i IR N
PB96-148733
’ Labelled Formal Languages and Their Uses
.
Daniel I Greene

Department of Computer Science

Scanford University
Stanford, CA 94305

DTIC QUALYTY INOPECTED 3

o et b e 1S i 3 TR0 o € AT, 2 B o AR . S, it . i o

LABELLED FORMAL LANGUAGES
AND THEIR USES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

by
Danicl Hill Greene
June 1983

This rescarch and/or preparation was supported in part by the National Science Foun-
dation under grants MSC-83-00084. IST-820-1926, and by the Systems Development Foun-
dation. ‘“TX’ is a trademark of the American Mathematical Society.

©1083 by Daniel Hill Greene

[S

e L TR = L

"_(n.—u-ﬁ"r—',a..\n:_'.VTFTT..."I-“

ABSTRACT

This rescarch augments formal languages with the machinery necessary to describe
labelled combinatorial objects such as trees, permutations, and networks. These objects
typically have requiremients for their labels (trees, for example, can be equivalent under
permutation of subtrees) that make certain labellings invalid or redundant. To deal with
this problem. tormal langnages are augmented with partial orders—derived strings have
partial orders specifying acceptable labellings, and productions of the grammar contain
fragments of partial orders. The traditional rewrite step in a derivation is now coupled
with a substitution that joins two partial orders.

The most attractive feature of this method of describing combinatorial objects is the
direct translation to generating functions. Treating the grammar of an ordinary formal
language as a set of cquations and then solving these cquations yields an enumerating
generating function. This is still true of labelled formal languages although thc equations
arc usually differential rather than rational or algebraic.

There arc two promising applications for labelled formal languages. In the analysis
of algorithms one often identifics combinatorial quantities that can be described with la-
belled formal languages and, using the translation mentioned above, these quantities can be
easily computed. The other application uses labelled formal languages to control a general-
purpose system for the ranking, scquencing, and selection of combinatorial objects. Both
of these applications demonstrate the value of labelled formal languages as a descriptive
and analytic tool.

B |

ACKNOWLEDGMENTS

Many people contributed to the preparation and debugging of this work. 1 would
like to thank Phyllis Winkler and Frank Yellin, who were both gencrous with their help
typesetting and formatting, and to numerous readers, Jeff Uliman, Lyle Ramshaw, Andrei
Broder, Yoram Moses, and Harry Mairson, whose comments clarified the material of this
dissertation.

It is probably easiest to say that my adviser, Don Knuth, did not make the paper used
to print this dissertation, because his assistance can be seen in every other aspect of the
work. He designed the fonts used throughout the text with the METAFONT system, and his
TEX system enabled me to typeset mathematical formulas with relative case. The Pascal
code in the appendices is written in WEB, another system of Don’s, that allows for the
decomposition of programs into modules, anud the natural intermingling of exposition with
code. But I am most grateful to Don for his personal cxample; as an excited rescarcher,
pioneer, and kind guider of graduate students, he has done a lot to make my ycars at
Stanford challenging and cnjoyable.

Undergirding all of this was the longstanding support of my parents. who encouraged
me in a way that was remarkzbly free of pressure, and in a way that hclped me find work
that was truly satisfying. It is to them that I dedicate this dissertation.

To my parents
Edmund Greene and Janet Schuyler Hublcy Greene

TABLE OF CONTENTS

L. Introduction . v« v ¢ ¢ ¢ o v ¢ s o s s o o 0 s s 0 s e s e e s oo 1

1.1 Variationsof Trees« v v & v o b v i i e e e e e e e e e 4
1.2 Indexing and the @ Operator« . ¢ o o0 e 8
13 Differencing L L L o e e e e e e e e e e e e e e e e e e e 1
2. Labelled Formal Languages . . « « ¢ « ¢ s s ¢ ¢ o s s s s s « o ¢ o+ 1B
2.1 Smallest Label Control o000 e 15
2.2 Translation to Generating Functions 18
23Examples . . . L L L L e e e e e e e e e e e e e e 20
2.3.1 Alternating Permutations 0000000 e . 20
2.3.2 Stirling Numbers of the First Kind 21
2.3.3 Stirling Numbers of the Sccond Kind oo o L. 22
234 Mappings L 0w e e e e e e e e e e e e e e e e 23
2.3.5 Schroder’s Third Problem« 0. 25
2.3.6 Schroder’s Fourth Problem and Series-Parallel Networks 26
237 FEulerianNumbers 000000 o e e e 28

2.4 A Generalized Definition 0 L0 0 o0 e e e e 31
2.4.1 Left to Right Maximaand Minima 35

3. Analysisof Algorithma« ¢ ¢ v ¢« v o v o 0 v o v o v o oo 37
3.1 The Degree of Associativity of a Hardwired Cache Memory 38
3.2 Binary Tree Secarch e e e e e e e e e e e e e 43
3.2.1 Diminished Trees« ¢ o o v v v v e e e e e e e e 43
3.2.2 Analysis of Diminished Tree Searching 45

4. Generation and Recognition . . . ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ e ¢ v o o ¢ o oo« . 07
4.1 Generation Problems L 0L 0L 00 s e e e e e e €9
4.1.3Counting L L . e e e e e e e e e e e e e e e e e e e 69
4.1.2 Sclection and Generation at Random . & 71
413 Enumeration L L L . e s e e e e e e e e e e e e e e e 75

4.2 Recognition Problems ™ 0000w e 76
421 Accepting . . L L L L e e e s e s e e e e e e e e e e e e e e 76
4.22Ranking L . L L e e e e e e e e e e e e e e e e 77
43O0vcrallEvaluation 000 s e e e e e 79

5. ConclUSion « ¢ v ¢ o o o « o o o o o o s o o o s s s o o oo 8l

Appendices . . . ¢ 4 4 e 0 s s 0 8 0 s 6 s s s s e s e s e e e e s e . 83

A. Bell Polynomials and Lagrange Inversion 83
B. Diminished Tree Search ¢ oo 0 00w o0 87
C. A General-Purpose Generator of Combinatorial Objects 95
D. An Example of Polya-Redfield Enumeration 139

Bibliography . L] . . L] . L L] L] . . L] . . . L] - L] 142

FIGURES
1.1 The Encoding of Trees & o v v v v v i v e e e e e e e 2
1.2 A Ternary Triangulation L0000 0. 4
1.3 The Cumulative Weights of a Functional Composition 7
1.4 The Tutte Triangulation c[tfefefefefe]ft} oo o oo L. 11
1.5 The Fanning Operation ¢y fta« . . . o v v o v v v v v 0. 12
1.6 The Closing Operation ¢ty fta] o . o o o v v v v 12
2.1 A Mapping of 1 to 11 into the Same Range 23
2.2 All Eight Networks of Three Resistors 27
2.3 Layout for the Dihedral Group o o000 30
3.1 A Simplified Picture of the Analysis of an Algorithm 38
3.2 A Two Way Associative Cache Memory o o o o v o0 oo 39
3.3 A Dummy Node and an Accumulatoro 000 oL 44
34 An Accumulator Splits 0000000 0o e e e e 45
35AHeap L L L e e e e e e e e e e e e e e 46
3.6 The Companion Scarch Trec and Permutation for Figure 3.5 46
3.7 The Distribution of Labels in Subtrees 52
38The Rootsof Po(D)« v v v v v v v vttt e e e e 56
3.9 Break Even Points and the Ratio of Successfur and Unsuccessful Searching . 65
3.10 Break Even Points and the Cost of Node Allocation 66
41Trivial Nodes o 0 v v e s s e s e e e e e e 71
42ADrasticNode L Lo s e s e e e e e 72
4.3 Summing TwoNodes o000 e e e 74
4.4 Multiplying TwoNodes o oo i 74
viii

CHAPTER 1

INTRODUCTION

The remarkably simple concept of a grammar has led to considcrable clarity in the
development of computer science.

Definition. A grammar is a four-tuple (T, N, S, P) consisting of
1) a terminal alphabet T (usnally small letters);
2) a nonterminal alphabet N (usually capital letters);
3) a start symbol S € N;
4) a set of productions P.
The heart of a graminar is item 4, the set of productions that guide the generation of
strings.

Definition. A production is a rewriie rule with two strings over the alohabet T U N.
The left hand string is separated from the right hand string by an arrow, for example,
AB — cDeF.

Definition. A dcrivation step consists of matching a substring with the left hand
string of a production and then rewriting it with the right hand string.

Definition. A string is derived by a grammar if it is possible to obtain the string
from the start symbol of the gramniar with a finite number of derivation steps.

In the remainder of this work, srammars will always be context-free, that is, their
productions will always have a single nonterminal oa the left hand side. We will usually
call these “grammars” even though they are more properly called “context-free grammars”
in the study of formal languages. It is often convenient to group several productions with
a comwmon loft hand side using vertical. bars to separate the production possibilitics. So,
for example, A - B ‘ C I D will denote three productions A - B, A = C, and A = D.
The grock € is used as a symbol for the null string.

=
Y
e
s

D 2 2 S g e o o s o AL it ko i 5

2 INTRODUCTION

Figure 1.1 The Encoding of Trees

Grammars are used primarily for description; they specify a set of acceptable strings,
called a formal language. For example, if we are encoding trees by their walks, with { for
lower, h for higher, and z for a tree node as shown in Figure 1.1, then the grammar

T—zF

(1.1)

F — IThF | ¢
specifies the language of valid trees. The first production means that every tree is a root
node connected to a forest of offspring, while the sccond production defines a forest as a
sequence of trces. Starting with the symbol T, the tree of Figure 1.1 is derived as follows:

T

zF

zlThF

zlzFhF

zlzhF (1.2)
zlzhlThF

zlzhlzFhF

zlzhlzhF

zlzhlzh .

Considerable rescarch has been devoted to the inversion of this process (parsing a string to
obtain a derivation) and to the study of the descriptive power of formal languages.

The focus of this dissertation is on another interesting property of formal languages.
If the productions of a grammar are treated as equations, with — replaced by =, I by +,
and ¢ by 1, and if the cquations are solved for the start symbol, the result is a generating
function for the number of derivations of the grammar.

Gencerating functions have become a central tool of combinatorial mathematics; they
are used to study sequences of numbers {2:}i>0- The g; are implanted as the Taylor
cocfficients of a function G of a dummy variable z:

G(z) =) g, (1.3)

3

and then the propertics of the sequence are studicd through the properties of G(z). Gen-
erating functions have various flavors. We will be using ordinary generating functions like
(1.3) in this chapter, and exponential generating functions in the following chapters. An
exponential generating function has the form

I'.

Glz) =) g (1.4)

In our applications, the g; cocficicnts will count the number of derivations of a grammar.
Grammar (1.1) converts to two equations:

T =zF

L
F =IThF +1. (1.5)

We solve for T by algebraically eliminating all other nonterminal characters and by treating
terminal characters as dummy variables.

1
F=1"wr
T-IhT? =z (1.6)
1+/1-4lhz
T= 2lh :

The extrancous root is discarded with the obscrvation that the grammar cannot derive an
empty tree, and so T(0) must be zcro. The remaining root is expanded:

1-+1-4lhz

T= 2tk
= Z (1/2)(_l)j—lzﬁj—llj-lhj—lxj
S\ (1.7)
o3 L (D) st
S1INI- 1

We obtain a multivariate generating function where the cocfficient of {®h%z¢ is the number
of strings having a U’s, b h’s, and ¢ z’s. However, | and h are not particularly uscful; there
will always be one less of these walk control characters than there are tree nodes. Hereafter
we shall drop such irrclevant characters by replacing them with 1 carlicr in the analysis. We
conclude that the number of trees with 7 nodes is equal to the Catalan number 3'- (2(}_‘1‘) .

This close connection between formal languages and power scrics appeared in the carly
work of Schiitzenberger and Chomsky [Schiitzen 1961] [Chomskv 1963]. They found that
power serics over noncommutative variables could be very helpful in the classification of
formal languages: regular expressions became rational equations, and context frec languages
became algebrair equations. Issucs of ambiguity were now questions about the cocfficients
of power scrics. A full discussion of this line of rescarch can be found in the recent work of

Salomaa and Soittola [Salomaa 1078].

oy

’f':
¢

o e e

B T VL R s Lo st e Lt L e b NN

4 INTRODUCTION

Maurice Gross was responsible for taking this line of rescarch in the direction of enu-
meration of combinatorial objects {Gross 1066]. He realized that by comnmting the variables
of the power series, one could collect in the coeflicients all words with the same composi-
tion of terminal characters. (In the example above, we collected togother all tices with the
same number of nodes.) This meant that if a combinatorial ohjeet conld be described with
a string of characters, and if the valid strings could be described with a grammar, then
it was casy to obtain a generating function for the family of combinatorial objects. The
grammar had to be relatively simple (regnlar. or context free) and had to derive unambigu-
ously the langnage of valid strings: nevertheless. this technique provided straightforward
cnumerations for several complex combinatorial famulies.

The aim of this dissertation is to extend the applicability of formal langnages to a
wide range of labelled combinatorial objects. This extension is developed in Chapter 2.
Chapters 3 and 4 explore the advantages of the extension. using it to analyze algorithms
and to generate combinatorial objects. But first of all. the remainder of this chapter is
devoted to a survey of the cnumerative uses of formal langnages. in order to describe
techniques that will be helpful in later chapters and to understand the limitations of formal
languages.

1.1 Variations of Treces.

In a fundamental sense, every grammar describes a family of trees. (These are the
derivation trees for the valid strings of the language.) So it is not surprising that context free
languages prove useful in the enumeration of objects having an underlying tree structure,
even though on the surface the problem may be unrelated to trees. Maurice Gross gives the
foilowing example: A ternary triangulation is formed by repeatedly dividing single triangles
into three parts. where the division is accomplished by adding a new vertex in the interior
of the triangle and counecting it to the three corners. A sample triangulation is shown in

Figure 1.2

Figure 1.2 A Ternary Triangulation

Triangulations are encoded with parentheses: Each triangle is represented by a bal-
anced pair of parentheses, (), and when a triangle is subdivided three new pairs are

introduced inside the original, (() () ()). representing the new triangles in clockwise order,

starting with the triangle on the base of the enclosing triangle. The base cdges of the

VARIATIONS OF TREES. 5

new triangles are those edges in common with the sides of the old triangle. Following this
procedure, the triangulation pictured in Figure 1.2 is encoded as

(O (coom00)()):

The grammar for this language guarantces that the interior of cach pair of parentheses
will be divided into three parts or none at all:

S - (558) (). (18)

We would like to count triangulations according to the number of triangles, so “(” is mapped
to z, and “)” is mapped to 1:
S§=z8+z. (1.9)

Rather than solve this cubic equation for S, there is an easier technique, due to Lagrange,
that allows us to find the cocfficients of S without knowing a closed form for § itself. In
general, if we have a functional equation for S,

s =1zf(5), (1.10)

and if we let (z")S denotc the coefficient of z” in the Taylor series for S, then Lagrange’s
inversion formula gives us:

(=) 8 = ~(5™1) J(S)". (1.11)
Further discussion of this formula can be found in Appendix A {which is oriented towards

exponcntial generating functions as opposed to the ordinary generating functions of this
chapter), and in the next example of this section. For the current example we obtain:

()8 = (5" (1 +8%)"

NE (,,'fl) n=3+1 (1.12)
=4n\"3
0 otherwise.

For further cnumeration problems with underlying tree structure see the works of
Maurice Gross [Gross 1966], Jay Goldman [Goldman 1978 and 1079], W. Kuich [Kuich
1970a and 1970b), and Vaughan Pratt [Kunuth 1973; problem 2.2.1-11]. Several other prob-
lems, althongh not analyzed originally with formal languages, also cxhibit tree structure:
Schrixder’s second problem, Fibonacei sequences, and occupancy problers (with unlabelled
balls placed in an ordered collection of boxes) can all be encoded with context free lan-

guages.

e i e oot sa s e

6 INTRODUCTION

The pervasive tree structure suggests that we analyze the most general tree possible,
cast in the form of functional composition {Goldman 1979]:

T—F|FR|F...
Fo — fo1 !fczl o | Joeo
Fi = fu(T) | f12(T) | f1a(T) | ... | f1en(T)

F - [u(T,T) | AT, T) | ... | fae(T,T)
Fy = [u(T.T,T) | fs2(T.T.T) | ... | f3,(T\ T, T)

(1.13)

A term, T, is cither a constant like fg;, or a function applied to several terins such as
J21(T,T). The first index of an f symbol indicates the number of operands expected by
the function. In order to count all possible compositions according to the number of terms
present, we map the f's onto z. This leaves an implicit cquation

T = zC(T) (1.14)

where C(T) has cocfficients equal to the numnber of functions of each degree:

C(T)=) ¢ T7. (1.15)

)20

Lagrange’s inversion formula is well adapted to invert an equation like (1.14):

N
)T = 1Ty (9;,1)) : (1.16)

But here Rancy has developed the following, alternate, appreach to the problem that
gives an interesting constructive interpretation of Lagrange's formula [Raney 1060]. First,
notice that no information is lost by dropping the parentheses from a composition of fune-

tions,
J1o(f21(Jo1, fo2))
J10 fa1 foi foa,

because the functions appear in an unambiguous Polish, or prefix order. However, not
every list of functions is a valid composition; we cannot always add parenthescs and obtain
a single term.

(1.17)

When is a list of functions a valid composition? The answer uses the following scheme
of Lukasicwicz: Functions requiring j operands are given a weight of 7 = 1, so the total
weight of a complete term will always be —1. Continuing the example above, fi0f21 fo1 foz
has wcights of 0, 1, -1, and —1 for a total of —1, as expacted.

Supposc that the we jumble together a collection of f's with a total weight of —1_ is
this necessarily a valid composition? Not always, but curiously one {(and only onc) of the
cyclic permutations of our list will be a valid composition. The reason lies in an additional

VARIATIONS OF TREES. 7

constraint on the weights. Not only must they sum to -1, but a cumulative, left to right
sum of the weights must remain greater than —1 until the last f. This avoids a premature
completion of the term.

If we graph the sum of the weights of the first j terms as a function of 7, then a typical
composition looks something like Figure 1.3 below.

J30 120 10 {00 100 00 f20 00 100
-

' PN
1 N

A

“ O -.nw
.

Figure 1.3 The Cumulative Weights of a Functional Composition

Notice that any cyclic permutation of these letters cannot be a valid composition since
point A would have a y component less than or equal to -1, and would appear before the
last position in the permutation. Conversely, if we take any collection of f 's summing to
~1, find the point with smallest y component (breaking ties in favor of the leftmost point),
and cyclically shift this point to the last position, then the new graph will remain positive
until the end, indicating a valid composition.

To derive Lagrange’s inversion formula we simply interpret the last few paragraphs with
generating functions. Starting with C(T), which has cocfficients ¢; equal to the number
of functions taking j operands, we can weight the functions according to Lukasiewicz by

dividing by T: C(T)/T.
Next we select N functions with total weight -1,

(T4 (%Q)N (1.18)

and we know that only one cyclic permutation will be correct, so there is a 1/N chance
that we have a valid compositional pattern:

N
(zN) T = %(T“‘) (gf_-r’l) . (1.19)

This is Lagrange’s formula for its inversion of T = zC(T).

The functional composition problem explains why Lagrange’s formula is so often seen
in the solution of grammar related equations. By adjusting ¢;, the number of functions with
i operands, we arc controlling the branching of a trce. Many problems are special cases
of the last analysis. For example the triangulation grammar appcaring at the beginning

~
oo
N

R e Sk fabon, e 2 e 51 e e i 5 n e

8 INTRODUCTION

of this section branches three ways (c3 = 1) and there is only one way to terminate the
branching, (co = 1). The remaining cocflicients are zero. This means that our carlier
application of Lagrange’s inversion formula in equation (1.12) is equivalent to treating
functional composition of a ternary function and a constant.

The generality of the last result also points to a limitation in the use of grammars in
cnumeration. The problems may be complicated by several nonterminals {corresponding
to constraints on the composition of functions) but it is hard to get beyond the basic tree-
like nature of these grammars. Nevertheless, some extensions are possible. The next few
sections are devoted to techniques that increase the versatility of context free larguages.

1.2 Indexing and the Q Operator

Consider the following problem:

Problem. Count the number of partitions of n into sequences of positive integers
11 i i3 < ovv <y such that §; +4g+ oot iy, = n, and the parts of the partition
are bounded both in number (m < j) and in size (i, < k).

To solve this problem, partitions arc encoded with blocks of q's separated by z's and ¢'s.
The ¢'s encode the parts of the partition, the z's mark the end of cach block, and the t's
signal transitions in block size. Using this system, a partition of q into 1+ 14 3 + 4 would
appear as

tqzqzttqqqztqqqqz . (1.20)

However, it is impossible to express a string like (1.20) with a finite grammar, since the
grammar could not insurc that block sizes increase. This difficulty is remedied with a
countably infinite number of nonterminals. The grammar accounts for block size in the
index of the nonterminals:

S;—»q‘:rS;ItS;+||c 120. (1.21)

If we start with Sp, the grammar has two quirks: it can generate an arbitrarily long string
of z's before it produces any blocks of ¢'s; and it can append an arbitrarily long string of
t's to the end of a partition. Both of these quirks are helpful in solving the problem as
originally posed. If we count all strings with j z's, then we will enumicrate partitions with
J or fewer parts. Likewise, if we cxamine strings with & ¢'s then the maximum part size
will be less than or equal to k.

The remaining challenge is to solve an infinite set of equations for Sp:
Si=q¢'zSi+tSi,1+1 i>0. (1.22)

This is accomplished by applying the operator, QJ(z) = f(gz), to cquation (1.22) and
noticing that we obtain the equation for Sit1:

QSi=¢"zQ8 +tQS +1 i>0. (1.23)

So we expect that QS; = S;, in which case the infinite sct of equations collapses to a
single equation for Sp: '
So=zSp +tQ Sy +1. . (1.24)

INDEXING AND THE Q OPERATOR 0
More formally, we have the following theore.a:
Fixed Point Theorem. Let S; be given by any systez of equations of the form
Si = ¢'0y(Si, Sis1) + 02(Si, Siz1) §20. (1.25)
with operators O, and O3 such that
QO,(A,B) = qu(QA.QQ) and QO3(A,B)=03(QA,QB). (1.26)
Let S* be a solution of
S* =0,(8°,Q8") +03(5°,QS5"), (1.27)
then S; = Q'S* will satisfy the system (1.25).

Proof. Apply Q' to (1.27).

The solution of (1.24) follows the pattern of binomial coefficien’s. We know that,
without the Q operator (i.e., when ¢ = 1),

So=2Sp+tSo+1

1
So= ——
0T 1zt (1.28)
So = Z (J-*:k)z’tk
5,k20 J

We claim that with the Q opcrator:

So=1S0+tQSo+1
1
1-z-1Q (1.20)

M

skz0 N 1 /e

So

where the following definitions make the analogy work:

la=(-a)(1-¢%)...(1-¢")/(1 -q)
(:‘+k)_ (1-q)(1-¢%)...(1- ¢+

il U-9...(1-¢)(1-q)...(1-¢") (1.30)
l m
m="‘z>o(z+i0) .

We assume, in the last sum, that the Q operators are applied to all factors on their right.
Further propertics of the Q opcrator and g-nomial coefficients can be found in [Andrews
1971]. '

et ey o G e o e 3 e it R o e et imbe . b N DREPRSIREES i Smatinct e

16 INTRODUCTION

Equations with the Q operator are not always as clean as the above example. Our next
example uses the chain rule to extract uscful information from a more difficult situstion.
It is a technique that appeared originally in the solution of problemn 2.3.4.5-5 in [Knuth
1973}, and will prove useful later in the analysis of algorithms.

Problem. What is the average internal path length of an unlabelled tree? (Internal
path length is the sum of the distances from cach tree node to the root.)

By modifying the grammar found at the beginning of this chapter we can preface each
node of the tree with a block of ¢'s. The length of the block of ¢’s is cqual to the depth of
the node within the tree:)

Ti—~qzF
120 (1.31)
Fi> 1T hFi|e.

An application of the Q opcrator reveals that QT; = T, so once again the infinite set of
equrations can be reduced to

To = zF,
00 (1.32)
Fo = (@To)Fo + 1.
This time the solution is not closed:
z
TO - IT-Q‘FO . (1.33)
It can be expanded into a well known continued fractior: of Ramanujan,
To = z , (1.34)
qz
1- 3
7’z
1- 3
1- 212
L =ee

but for our purposes we do not need a complete solution, only an average path length. This
suggests differentiating equation (1.33) with reupect to q and sctting ¢ cqual to 1. Let

2T,
Ulz) = —— . 1.35
&= %) (135)
We have alrcady computed
1-y1-4

V(z) = TOIq»-‘l = -—-——2 z . (136)

Rewriting cquation (1.33) and then differentiating the equation gives

L -TQRTy ==z

o — ToQTo (137)

U-UV-V(V'z+U)=0,

DIFFERENCING 11

where the term in parentheses is the chain rule applied to QTp. Algebraic manipulation
yiclds:

zvv!
U= 1-2V
pofl-Vi—@
T2 1-4z (1.38)

U= g % (4n-l - (2(::11))) "

For an average path length we divide by the total number of trees:

n 22n-3
(Q(n-u l))

n-1

-3 | (1.39)

1.3 Differencing

The next example, taken from [Gross 1966], illustrates another technique for dealing
with languages that do not have grammars in the usual sense. The problem is to enumerate
Tutte triangulations.

Definition. A Tutte triangulation is a division of a polygon into triangles such that
no internal edges have both their endpoints on the boundary of the polygon. One of
the external edges is marked with an oricntation, as shown in Figure 1.4 below.

~
P

Figure 1.4 The Tutte Triangulation c[tfc[t/tftf]ft].

A triangulation is assembled from individual triangles that are denoted by ¢'s in the for-
mal language. Initially cach triangle has a marked, counterclockwise oriented edge. The
structure is aggregated by two operations. The fanning operation, f, joins two structures
by abutting the edge following the marked cdge of the first structure with the marked edge
of the second structure. The expression ¢t is shown in Figure 1.5 below. Notice that the
marked edge of the first structure remains the marked edge of the whole structure.

E.\u;«au...m_.‘u. &t K £3 e e

e e e e bt st o s St s i it e et e S A i e et

12 INTRODUCTION
4 : t2 > [y
= -
-

Figure 1.5 The Fanning Operation ¢, ft,.

The closing operation, ¢, creates a new marked edge that is connected to the tail of the old
marked edge and the far end of the edge following the marked edge. The closure of Figure
1.5, c[tft], is picturcd in Figure 1.6.

Figure 1.6 The Closing Operation c[t; f;].

The grammar for Tutte triangulations specifies that the outermost, or last operation
must be a closure, to prevent internal cdges from bisccting the triangulation:

S—+c[R]|t

1.40
R—-S|RSS. (140)

If we strip off the outermost closure, what remains is a triangulatiou that allows bisccting
edges to touch the head of the marked edge. These arc represented by R in the above
grammar; R can be decomposed by noting that R is either itsclf a Tutte triangulation,
with no bisccting edges, or we can find the rightmost bisccting edge and split off a Tutte
triangulation.

However, there is a serious flaw in (1.40). It makes no sense to close a single triangle,
and in general, if a structure has j extcrnal edges we may apply ¢ only j — 3 times before
an external triangle results. In order to avoid closing a triangle we would like to constrain
the ¢’s to be strictly less than the enclosed t’s, yet this does not scem possible with a
context-frce grammar.

The following diffcrencing trick allows us to derive a correct cquation from the grammar
at (1.40). Let T be all strings representing Tutte triangulations where the exterior polygon

DIFFERENCING 13

is a triangle. Since S represents all Tutte triangulations, T is a subset of S, containing
strings wirh one more ¢ than c. If a string derived with (1.40) violates the constraint on c’s
and t's, then somewhere within the string a structure with triangular exterior is closed by
a ¢ operation. We prevent this from happening by subtracting the language ¢|T) from the
first nonterminal:
S—c[Rl|t - cT]
R-S|RfS.

Subtraction means that we climinate a set of strings from the language derived from a
nonterminal. If the strings eliminated are a proper subsct, as is the case here, we can
proceed with a translation:

(1.41)

S=cR+t—-cT
142
RS (1.42)
1-f8
These equations combine to give:
cS
S+cT—t+1_fS. (1.43)

The will always te one more ¢ than f, so ¢ can be replaced by 1. Now T(f,c) is simple
the diagonal terms of S(f,c), and most features of interest are related to the occurrences
of f and ¢, denoted respectively by 7 and C:

Interior Triangles=F +C +1
Exterior Edges =F-C+3 (1.44)
Interior Edges =7 +2C.

Using a sophisticated application of Lagrange’s theorem to equation (1.43), Tutte was
able to find an expansion for § [Tutte 1062; pages 26-31]. The number of triangulations
according to ¥ and C turns out to be

2(4C + 1)!
BC+2) (C + 1)

(1.45)
for ¥ =C, and
3F-C+(F-C-n="CLY Brrc1-)(F-C+2+35)(F-C-3)

37 +3)! FG+)F-C-NF-Crz-C-1-J)
(1.46)

=0

for ¥ > C.

14 INTRODUCTION

This completes our survey of the traditional uses of formal languages in ennmeration
and some of the techniques used to extend themn beyond their context-free limitations.
Additional examples of non-standard use can be found in the works of Cori [Cori 1970,
1972, and 1975], who uses them to study planar graphs, and in [Flajolet 1980}, where they
are used to count sequences of operations on data structures.

In the remaining chapters we will extend the uscfulness of formal languages from unla-
belled to labelled combinatorial objects. This is accomplished by adding partial orders that
govern the labelling of terminal symbols, and that preserve the straightforward translation
(of grammars into equations) seen throughout this chapter.

Chapter 2 introduces labelled formal languages, explains the relationship of grammars
and partial orders, and demonstrates the wide range of classical generating functions that
can be derived from this new framework. Chapters 3 and 4 explore some of the applications
of labelled formal languages in diverse arcas such as the analysis of algorithms and the
counting and random generation of combinatorial objects.

The grammatical extensions that follow are believed to be new, although they bear
some relation to recent efforts to vest analytic operations with combinatorial meaning (see
for example [Joyal 1981]). The “diminished scarch trees” of Chapter 3 do not appear to
be cither known or analyzed by carlier authors, however the differential equations used in
Chapter 3 are also used to study the closcly related “median of n” modification of quic! ~ort
[Sedgewick 1975], [Knuth 1975]. Finally, the general purpose system described in Chapter 4
and implemented in appendix C, scems to be unique in its ability to generate a vast variety
of combinatorial objects from short gramnmatical descriptions. '

CHAPTER 2

LABELLED FORMAL LANGUAGES

In the previous chapter we found that grammars could express a variety of interesting
structures and werc casily translated into generating functions. However, the class of
combinatorial objects expressible in this way is limited. We could encode unlabelled trees
with I’s and h’s for the lower and higher movements of a tree walk:

zlzhlzh, (2.1)
but it was not possible to generate labelled trees, such as
zglzlhlzsh (22)

with ordinary grammars.

The purpose of this chapter is to define an extended form of grammar that will generate
the second, labelled, string given above while retaining the nice translation property of
the preceding chapter; it will still be possible to convert a grammar systematically into
an cquation and obtain a gencrating function, although the equations will typically be
differential and the generating functions will always be exponential.

2.1 Smallest Label Control

Throughout this section the labclled tree problem will serve as a good illustration:

Problem. How many rooted unordercd labelled trees with n nodes are possible?
[Cayley 1889] [Moon 1970] :

Unordered means that we do not care about the ordering of subtrees at each node. With or-
dered subtrees the answer is just n! times the number of ordered unlabelled trees computed
in Chapter 1, so it is the permuting of subtrees that makes this an interesting problein.

A labelled formal language has two new features. First, there is a special terminal
character z. The occurrcnces of the special character reccive distinct labels in the range 1
to n, where n is the total number of special characters. Second, every derived string, partial
derivation and production in the grammar has an associated partial order that specifies
acceptable ways of labelling the special characters. For example, suppose we derive the
string

zlzyhlz h (2.3)

- rp € Latrsmiois st raaravans R L S Lt 3 ER—

16 LABELLED FORMAL LANGUAGES

representing a small tree with two sons. Here a, b, and ¢ are variables for the labels 1, 2,
anl 3 that have yet to be assigned. Since we do not care about the ordering of subtrees
the two labellings

zolz hlzgh and zalzghlzih (2.4)

are redundant; only one should be prcduced by the grammar, so the partial order b < ¢ is
associated with the string:

[b < c]xglzyhlz h. (2.5)

This way all labellings of the string will be in a canonical order, with the label of the first
subtree less than the label of the second subtree.

We must now expect our grammar to produce both a string and a partial order. For
this purpose variables are added to any nonterminal that can derive a string with z's:

T - [|zaFs

(2.6)
F—le< JlIT.hF; | €.

We also associate a partial order with each production possibility. In the production T —
[JzaFy, the b subscript on the nonterminal F is a variable for one of the labels 1 to n.
However, since F can derive a string with many z’s, the b stands for only the smallest label
amongst the z’s dcrived by F, if there is at lcast one z. Thus the production

F — [e < [{IT.hF, (2.7)

requires that the smallest label in the string derived from T, be less than all the labels in
the string derived from Fy. This constraint is precisely what we want for the tree problem,
since this production is spinning off the descendants of a node in such a way that the
smallest label will appear in the leftmost subtree, and of the remaining labels the smallost
will appear in the sccond on the left, and so on. Notice that these smallest labnls can
appear anywhere within their subtrees; we are not ordering the roots of the subtrees as one
might expect. Nevertheless, the final labelling, if it obeys the partial order fragments in
cach production, will be a canonical representation of a tree.

A grammar of an ordinary formal language is a set of rewrite rules. Beginning with
the “start” nonterminal and repeatedly replacing nonterminals by one of their production
possibilitics eventually results in a string of all terminals. A sim - process works for la-
belled formal languages. In the tree example we modify the granym... slightly by expanding
the first production, so that

T - [|z.Fy (2.8)

is changed to ’
T - la < bzaFy | [c > dz.Fy. (2.9)

This way cach production possibility records the location of the smallest label.

The string portion of a labelled formal lar:guage functions like a rewrite system, with
renaming of the sul.zcript variables a,b,c... if necessary to insure that all the subscripts
i any partial derivation are distinct.

The partial order is modificd by substitution. Suppose we bave a partial derivation,

[P uSav, (2.10)

"

o i A bt S

SMALLEST LABEL CONTROL 17

and we apply the production

S — [Q]w, (2.11)

where u, v and w are strings, 7 is a partial order on the subscripts of uS,v, and Q is a
partial order 02 the subscripts of w. then S is rewritten to w, and a, in partial order P, is
replaced by the smallest item of partial order Q. The res.ainder of Q is also added to P,
but with no additional relationships between P and €. sav- those implicd by the addition
of the smallest item of Q to P. In bricf, the applicatior of (2.11) to (2.10) yiclds:

[P with Q substituted for a] uwv. (2.12)

The substitution of partial orders is linked to the substitution of strings by the following
requirement: if § is being rewriten to the empty string, then a must be maximal in P. Or,
equivalently, whenever a nonterminal has a subscript that is not maximal it must generate
at least one z.

A labelled version of the small tree example should clarify the substitution process.

T —|a<blz,Fy (ny
T —{c>d|z.FT 2
F— {z < f]] 71‘,;:1«", %3; (2.13)
Fe (4)

The productions used are recorded on the right:
(T
[c > d] z.Fy
[e>e< [lzAT hF;

(2)
()
(1)
4)
[c>a< flzdzahFy (2.14)
)
(1)
(4)

(4)

[e>a< fia<blzlz,FyhFy

[c>a<g<i|zlzhIT hF;
c>a<j<i;j<klzlzohlz;FrhF;

j
le>a < j<i|zclzahlz;hF;

le > a < jlzclzahiz;h

Note that the partial order obtained by this process is stronger than necessary since
we only care that a < j (compare with equation (2.5)). The extra strength is duc to the
production chosen in the first step of the derivation; using T — [a < b] 2, F would have
derived another possibility, [c < @ < j]. This is ultimately a consequence of onr splitting
the first production, T — [}z, F}, into two cases @ < b and b > a. However, this splitting
process is necessary, for in order to substitute one partial order into another we must know
the smallest item in the substituted order.

The tree example illustrates another important constraint. At several points in the
derivation the fourth production was applied and labels disappeared from the partial order.

e i

18 LARBDLLED FORMAL LANGUAGES

At these points we cannot allow the label disappearing to be less than any other label. Thus
the rewrite F -+ ¢« can be preceded by T = [a < bz, Fy, but not by T — [c > d]z.Fy.
This requirement climinates nnwanted ambiguity.

In summary, an labelled formal langnage describes two intimately linked actions: a
rewriting process for strings and a substitution process for partial orders. As the grammar
rewrites a string it weaves together a partial order that specifies acceptable labellings of
the special characters.

2.2 Translation to Generating Functions

The simplest and perhaps most useful labelled formal languages have productions of
the form
Rop<ab<cbd. . |S,TWUVy.... (2.15)

where the partial order specifies one label, in this case b, to be less than all the others.
For the time being we will restrict our attention to these simple partial orders, and use
the following shorthand notation: a box superscript marks the nonterminal or terminal
receiving the smallest label, so the above production would be noted as:

R - STOUV..., (2.16)
and the tree grammar of the preceding section would appear as: .

T —zF

2.17

F —ITOhF |e. (217)
The absence of a box on the first tree production denotes the absence of constraints. We
could also have written,

T — z°F | zF°, (2.18)

expanding the production as we did in the preceding section. In later sections we will
explore morce complex partial orders.

Thie translation of labelled formal langnages to generating functions proceeds as follows:
1) Convert the grammar to a set of equations by changing

a) — to =

b) I to +

c)etol

d) STRUV ... to f(ST'UV...)

2) Solve the differential equations for the start symbol and treat the result as a mul-
tivariate generating function that is exponential in the special character, and ordinary in
the other terminal symbols.

The tree grammar, for example, translates to

T=2zF

F= [(IT'hF) +1. (219)

TRANSLATION TO GENERATING FUNCTIONS 19

The I's and A's arc not particularly intcresting to count, so ! and h are sct to 1. After
diffcrentiation the sccond equation becomes

F=TF, (2.20)

with solution F = eT, so we obtain the classic, implicit, generating function for labelled
trees [Polya 1037):
T =zeT. (2.21)

Notice that it doesn't matter which form of the first production we use for the translation.
The first version T — zF, yields T = zF while the second version, T — z°F ' zF9, yiclds
T = [2'F + [zF', but both are equivalent under integration by parts. Combinatorially,
the integration by parts rule simply states that the smallest label must appear in one of
the two substructurcs on the right hand side. .

Why does this translation work? The key step is 1.d, where STPUV ... is changed to
J(ST'UV ...). The other aspects of the translation are similar to the procedures used for
ordinary formal languages. Step 1.d, however, integrates the whole term, with the derivative
placed on the boxed terminal or nonterminal within the term. Both the integration and
the differentiation are with respect to the special character, in this case z, which is now
treated as a commutative variable. The constant of integration is always zero, that is,

J /(z) means foz f(y)dy.

1t is not hard to sce why this works. Suppose we have a production R — ST which
translates to R = ST, and we have two exponential generating functions for S and T

S= Es;%
>0

Y]
T=th%.

jz20

(2.22)

Then the product is given by

R=) () (':) sitk—s :—: | (2.23)

k>0 \s20

where the inner term, (f) 8;tx -3, builds a labeiled derivation for R by taking any derivation
s; for S, combined with any derivation ¢, for T, and relabelling so that the relative orders
of the labels within S and T individually are maintained, but the two scts of labels are
intermingled in all possible ways, (’:)

Suppose now that we insist that the smallest label appear in the subtree derived
from T by writing R — ST°. With exponcntial generating functions, the integration and
differentiation in the translation of this production, R = f(ST'), act like shift opcrators:

i
T = Zz,-ﬂ‘;',!- : (2.24)

320

e

20 LABLLLED FORMAL LANGUAGES

Therefore the product,

_ k
R = Z z (k' l)s‘tk”,' -z—!, (225)

k>0 \i>0

corresponds to shifting the smallest label of T away, intermingling the remaining labels,
and then returning the smallest label, We obtain (k'. l) rather than (’:)

2.3 Examples

This section reviews a variety of classic enumeration problems in order to show the
broad applicability of labelled formal languages. For eack: problem we will find an encoding,
grammar, translation. and solution. Since some of the solutions will be given implicitly, by
cquations like T = z¢eT, a special appendix has been devoted to the techniques of Lagrange
and Bell for recovering meaningful information from such cquations. For cach of the classic
problems two references are given, the first to the original source of the problem, and the
second to a more accessible modern reference.

2.3.1 Alternating Permutations

Problem. Count the number of permutations 6,03 ...0, of 1,2,...,n that obey
02i-1 > 02; < 02,41 for all i. In these permutations the first entry is large and
thereafter large and small strictly alternate. [André i878] [Comtet 1974; p. 258]

For the sake of clarity we restrict the problem to odd length permutations. The
encoding of these permutations is simply a string of z’s, with the ith z having label g;. So
for n = 3 there are two correctly alternating permutations, z2z1T3 and 37,25,

The grammar for alternating permutations,
A— AzPA |z, (2.26)

is based on the obscrvation that the smallest labelled z in the permutation splits the
permutation into two correctly alternating pieces. The translation of the grammar,

A= /‘A’ +z, (2.27)

reduces to a diffcrential equation
A=A+ 1 (2.28)

with solution A = tanz.

This example raises some interesting questions of ambiguity. In the preceding chapter a
grammar had to be unambiguous to be uscful for cnumeration. The same holds for labelled
formal languages, although in this casc the underlying ordinary grammar A — Az A | zis
very ambiguous. It is the box operator, the augmentation to the gramnar, that makes this
an unambiguous grammar and allows us to obtain a uscful gencrating function.

/
[
,'/ »

STIRLING NUMBERS OF THE FIRST KIND 21

2.3.2 Stirling Numbers of the First Kind

Problem. How many permutations of n elements have exactly k cycles?

This time permutations are encoded by their cycle structure. For example, the permu-
tation taking 1234 to 3241 has cycle structure (2)(314), but since (2)(143) and (314)(2) also
represent the same permutation we will disambiguate these possibilitics by writing cycles
with their smallest element first, and arranging the cycles so that the minimnums increase
from left to right, c.g., (143)(2). This is captured with the grammar

P—C9%P|e
Cc-z1°R (2.20)
R -»zR I €.
The first production lays out the cycle structure, with b's separating the cycles. The box
operator insures that the cycles will have successively larger minimum elements. The last

two productions derive a cycle: C — z®R makes the first item the smallest in the cycle
and R — z’ | ¢ finishes the cycle without constraint.

The translation and solution of this grammar is straightforward,

1

R=l-—z
C= -L———l(l—z)
“J1-z n

2.30
P= / (C'bP) +1 (2.30)
P'=C'bP
P =e-bin(1-2)
giving the familiar gencrating function for Stirling numbers of the first kind:
~bln(1-7) _ ({ _ £)=b = i FUE
¢ (1-2) "Z; [J] ¥y (2.31)

Two modifications of the above grammar result in other well known generating func-
tions. By insisting that no cycle contains a single clement,

P —CPP |
C —z"zR (2.32)
R - zR | €,

we obtain derangements (permutations without fixed elements). This grammar converts to

P=(1_z)b. e

v
i

P U U

N e A e A . e % N 8 N e Ao st e S T 4?1 o ae ke e L wrn + vbawisae o eree ot o

22 LABELLED FORMAL LANGUAGES
By insisting that cach cycle contains no nore than two clements,

P - Co%P]¢

(2.34)
C — z% l z,

we obtain involutions (pcrmutations ¢ such that o2(z) = z) with a generating function

P = bzt27/3) (2.35)

2.3.3 Stirling Numb_ers of the Second Kind

Problem. Count the number of partiticns of 1 to n into j nonempty subsets. This
corresponds to placing n numbered balls into j indistinguishable boxes, disregarding
the ordering of balls within hoxes.

The partition is encoded as a series of labelled z’s, with p's marking the boundary
between subsets. Within a subset, since the order doesn’t matter, the z’s are arranged in
ascending order of their labels. Thus there are three partitions of n = 3 into J = 2 parts:

Z1pT22T3p
Z1TapI3p (2.36)
I1ZT3pz2p

An extra p appears at the right of cach string so that there are as many p’s as blocks in
the partition.

The grammar,

, F — BF |e
B — z°R (2.37)
R - z°R I €,

functions by first laying out the blocks of the partition arranged in increasing order of their
smallest labels. Inside a block, the last two productions arrange the labels in ascending
order, and insure that there is at least one z per block.

Beginning with the last production we can transform and solve the grammar:

R=¢
B=/R
(2.38)
B=e¢-1
F=p/B'F+l .
F = ePle*-1)

NN e i s

MAPPINGS 23

Notice that when e is integrated to find B, we must subtract 1 to make the constant of
integration zero. The solution gives a generating function for the Stirling numbers of the

second kind,
. ”
-1 = 3 {"} % . (2.39)
n,J J)

Later on, we will find use for the associated Stirling numbers of the second kind,
denoted by {';} /o and equal to the number of ways of partitioning n into j subscts with

at least 8 items per subset. Rewriting the above grammar to force larger subsets,

F — B?pF l €
B,‘ — J:C'B;_l 1 S t S s (2.40)

Bo—’ZDBOIG,

and translating this grammar, gives a gencrating function for associated Stirling numbers:

(2.41)

2.3.4 Mappings

A mapping of the integers 1 to n into itself will consist of severai disjoint components,
each with a central cycle. Pictorially, a mapping looks something like this:

Figure 2.1 A Mapping of 1 to 11 into the Same Range
Problem. How many mappings f: {1...n} — {1...n} have exactly j components?

If a mapping has only one loop and no other cycles then the niapping is a labelled tree.
On the other hand, a surjection will consist entirely of cycles, with no tree-like structure.

24 LABELLED FORMAL LANGUAGES

The grammar for mappings combines these two extremes; it includes a both a tree generator
and permutation gencrator:

P —CPbP|e
C - T°R
R—TR|e

T —zF

F —ITOhF |e.

(2.42)

The first three productions have already appeared in Section 2.3.2 on permutations and
Stirling numbers of the first kind, and the last, two productions form a familiar tree genera-
tor. Together these productions gencrate mappings, coded with b's separating components
of the mapping, and lists of trees within components ordered so that the tree roots form
the cycles. The mapping pictured above would encode as:

zelzglzyhlzghhzglzyhzebrazybryglzshb. (2.43)
Portions of the solution of this grammar are given implicitly,
F=¢T
T = zeT
R=—_ (2.44)
1-T
C=-In(1-T)

P = bh(1-T)

so we don’t have a closed form for P. However, using the techniques of Appendix A,
detailed information can be recovered from the gencrating function:

.xn

r=x (S () va

Metropolis and Ulam initiated the study of the number of components in a randon
mapping with some empirical results [Metropolis 1953]. Subscquent authors were able to
compute the expected number of components and give complex formulas for the distribu-
tion. The comparatively tight expression in (2.45) was discovered by Riordan [Riordan
1962]. Other questions about random mappings such as the mumber of recurrent clements
(thosc involved in cycles) have been studied and are also amenable to treatment with la-
belled forinal languages. :

(2.45)

SCHRODER'S THIRD PROBLEM 25

2.3.5 Schroder’s Third Problem

Problem. A sct of n labelled clements is chained together in groups of size m as
follows: we repeatedly collect m clements, delete them from the set and then add
them back together as a single, new, grouped clement until only one clement remains
in the set. This single clcmnent is the root of a labelled m-way branching tree. How
many such trees or chainings are there? [Schréder 1870] [Comtet 1974; p. 165]

The problem is solved with a modified tree grammar, designed to force exactly m
descendants at each node:
T — bSme | z
Si — TDS"_l 1<i<m (2.46)
S —-T.

A matched pair b {begin) and e (cnd) mark the left and right ends of chains. So, for
example, there are ten chains of n = 5 clements with grouping factor m = 3:

bbzr zoz3exsz5e bbzyzyzsezazze
bbz zozeezsT5E bxybzozszsezse
bbz TozseL3T4€ bribrozzzsexse (2.47)
bbz z324€Z2Z5E bz ,bzoz4z5e23€
bbzyx3zsexqzae bz,z9bzaz4z5€8

Notice that since the problem specifies no order among the m terms in a chain, the grammar
uses a box operator to specify a canonical left to right, smallest to largest layout.

Dropping b and ¢ from the problem, the graminar translates to:

T=S8m+z
S; = /T’S.'_l 1<i<m (2.48)
$ =T,
from which we conclude that -
S.‘ = .‘l_" (249)
and
N T"l
T=z+ H . (2.50)

Once again the gencrating function is given implicitly and the techniques of Appendix A

are applicable:
(St (i) G

when m — 1 divides n — 1.

st S . N B A A5 T 1k s e b e < e 0 T b et W o R b T RPN 34 PRSP

20 ‘LABELLED FORMAL LANGUAGES

2.3.6 Schrider’s Fourth Problem and Series-Parallel Networks

Problem. A Schréder system is a collection of subscts of the integers 1 to n that
includes cach singleton subsct {i}, the whole sct, {1,2,3,...}, and othcr subsets that
are strictly hierarchical, that is, AC B, BC A, or ANDB = 9. We wish to count the
number of Schréder systems of n elements. [Schréder 1870] [Comtet 74; p. 224]

Since they are hicrarchical, Schroder systems can be generated with labelled formal
languages. The terminals b and e are used to bracket each subset:

S — bze | bSO Me
M- 59Q (2.52)
Q-8 |e.

Notice that S — bze encloses every integer in its own subset. The combination of produc~
tions § — bS®Me and M — $PQ climinates redundant subsets like bbbz eee.

Working backwards through the grammar, the productions convert to equations that
are rcadily solved:

Q=/S’Q+1

M= / 5'Q (2.53)
[

S=bez+be/S'M
S=bez+be(es—S—l).

For counting purposes b and e are redundant— one of them can be dropped from the equa-
tion. Applying Lagrange inversion to

S=bz+b(e5-5-1) (2.54)

gives an expansion in terms of the associated Stirling numbers of the sccond kind:

s= {71 szt (2.55)
- J /2 n!
nn

Networks of resistors motivate a problem that is closely related to Schroder systems.
Every resistor has a different label, and the ordering within a scrics or parallel group is
irrelevant. So, for instance, there are only eight significantly different networks of three
labelled resistors:

SCHRODER'S FOURTH PROBLEM AND SERIES-PARALLEL NETWORKS 27

[f:] 3 [jE] 2 [fi] 1
—_—+ {1 {5

Figure 2.2 All Eight Networks of Three Resistors
Problem. Count the number of distinct networks of n resistors.

A nctwork is encoded by using p and g (backwards p) to bracket a set of circuits in
parallel, and s and z to analogously bracket circuits in serics. The string betwecn a matched
p and q can contain individual resistors, z;, or series circuits enclosed in s and z. So the
above eight networks of three resistors would encode as:

pT1Z2239 8T123232
SpT1239%32 SpT1T39T32 8T1pT37392 (2.56)
PsxT1T3223q psT1Z32%29 PZT18T3T32q

Needless to say, there is a great deal of symmetry between scries and parallel. The three
productions that gencrate a parallel circuit,

A—-z | pE®B
B — E°C (2.57)
C — E°C|q,

are identical to the three productions for series circuits,
E-z | SA°F
F — A9G (2.58)
G — A°G | z.
To this we might add an initial production,
T-A|E, (2.59)

that allows the whole network to be series or parallcl, but unfortunately this production
generates two different single resistor networks; everything is fine, except for the case n = 1.
To remedy this, we advance the first production beyond A and E,

T — z | pE°B | sA°F, (2.60)

S AL b sl s e

e e s o 8 i b etk e 4ok e i e b s St e ot 5 fme i n o nia

28 LABELLED FORMAL LANGUAGES

and include only one copy of z.

When translating this grammar, A can be expressed in terms of E,
A=z+p(f-E-1), (2.61)
and likewise, E can be expressed in terms of A,
E=z+s(e‘—A—l). (2.62)

Since we are secking the total number of circuits of n resistors, independent of the number
of internal series and parallel constructs, we need only invert E = z +e£ — E — 1 to obtain

. n+j-1 zn
E= Z{ i }/2 - (2.63)

0<j<n

Except for the case n = 1 the number of series-parallel networks is twice this cocfficient,

0<jy<n

The connection with Schroder systems should now be apparent. A Schroder system
becomes a series-parallel network when it is “striped,” by choosing a series or parallel nature
for the largest set, and then alternating series and parallel down the chains of successively
smaller subsets.

The study of networks was begun by MacMahon [MacMahon 1892], who gave a for-
mula for the unlabelled problem. Knédel found the implicit generating function for the
labelled problem {Knidel 1951) and Carlitz and Riordan noticed the correspondence with
Schrider’s problem [Carlitz 1959]. A good exposition, combining the labelled and unla-
belled variations, can be found in [Riordan 1978).

2.3.7 Eulerian Numbers

Problem. A descent in a permutation is a pair of adjacent elements such that o; >
0i+1. We wish to count the number of permutations with 7 descents.

For this problemn we encode the perimnutation directly in the labels of the z's. A 9
is inserted between every pair of z's with dccreasing labels. For example, there are four
pernmtations of n = 3 clements with 7 = 1 descent:

T1Z39Z3 I20T)Z3

32397} T39Z1T3 (2.65)

The grammar for this encoding relics on a simple fact: the smallest label will always
cause a descent, unless it is at the left end of the permutation:

E - Egz°F | 2°E | Egz° | z. (2.60)

EULERIAN NUMBERS 20

The differential equation derived from this grammar,
E'=gE*+E+g¢E+), (2.67)

is complicated by the nonlincar function of E on the right side of the equation. Since this
type of cquation has appeared before (with alternating permutations, Subsection 2.3.1), we
pause now to consider a solution strategy.

If the right side of the equation has no constant term,
Y =kY?+ kY, (2.68)
then the transformation Y = 1/Z yields a first order linear differential equation,
-Z'=ky+kyZ. (2.69)
When a constant term is prescnt in the original probiem,
Y =k Y2+ kY + ks, (2.70)

then a constant ¢ is also added to the transformation,

Y = % +e, (2.71)
giving an cquation
~Z' =k (1 +cZ)? + k(1 +¢2)Z + ks 2. (2.72)

First kyc? + kqc + ks = 0 is solved for ¢ to eliminate the Z? term from the right side of the
equation, and to reduce the problem to a first order linear differential equation.

Returning to the problem of descents, we find

= é— +c (2.73)
act+(g+1)e+1=0 ‘ (2.74)
eg=-1 or - 5 (2.75)
(Curiously, the choice of root here does not matter, so ¢; = —1 is used.)

-Z2'=g-29Z2+(g+1)2
Z=(g-1)Z~g (2.76)
Z= 9 1 + cae’(ﬂ“l)

Since the grammar does not gencrate an emply string, E(0) is zero, Z(0) is one and so
¢g = —1/(g — 1). Asscmbling the results, we obtain the classic gencrating function for
Eulerian numbers [Euler 1755; p. 487):

g-1

E= g-e’(?"l) _ ’

(2.77)

30 LABELLED FORMAL LANGUAGES

A recurring theme of the preceding examples is the idea of laying out a structure
in canonical formm. A group acts on some portion of the structure. and yet judicious use
of the box operator insures that ouly one representative from cach equivalence class is
generated by the grammar and counted by the generating function. So far we've seen
the symmetric group {acting on such things as the descendants of nodes in trees, and
collections of indistinguishable subsets}) and the cyclic group (acting on the cycles within
permutations). To these two groups we can add two closely related groups, the alternating
group and the dihedral group. The use of the box operator with these four well known
groups i3 summarized below. The clements of the group are denoted by E's which can be
either single z's or nonternunals that derive structures containing z's.

1) The Syminetric Group, Sy:
S — E°S |e. (2.78)
Here the clements of the group are arranged in sorted order, based on the smallest label
within each element.
2) The Alternating Group, A,,. The grammar must permit an additional degree of
freedom in the last two elements:
S - E°S|EE. (2.79)

3} The Cyclic Group, C,. A cycle is in canonical form when the smallest label is in

the first element,
S — E°T

(2.80)
T— ET | €.

4) The Dihedral Group, D,. The dihedral group is laid out in the order depicted
below:

Figure 2.3 Layout for the Dilhedral Group

where the group is generated by a cyelic shift, (1357...642), and a flip, (1)(23)(45)(67).. ..
The grammar places the smallest label in the first element and insists that the second
clement contains a smalier label than the third:

S — E'TU
T-E°E (2.81)

U—-FLEU|e.

In this way the four common groups can be encoded with labelled formal langnages.

A GENERALIZED DEFINITION 31

2.4 A Generalized Decfinition

From a bottom-up perspective, the labelled production C — ADB constructs a string C
by first constructing two labelled strings. A and B; then concatenating the strings; and then
shuffling the labels together, in much the same way that two decks of cards are shuflled
together. The presence of a box operator, C — AP B constrains the shufie so that the
smallest label in A is also the smallest label in C; one card is flipped down from the 4 deck
at the beginning of the shuffle.

Pursuing the card analogy further, a “good” dealer can control more than just the first
card on the bottom of the deck. The intermingling of the first few cards as well as the last
few cards can be manipulated by the dealer as he shuffles. In the definitions that follow,
two partial orders are intisduced in the grammars. The partial order cnclosed in brackets
constrains the mingling of the smailest labels while the partial order in braces controls the
largest labels. So, for instance, the production

C—{e>>g)b<c<aall B (2.82)
specifics that the two largest labels will appear in the string derived from A and the two

smallest labels will be in B’s derivation.

Before we attack the general definition of labeiled formal languages we necd some
basic facts about partial orders. It is helpful to have a definition of partial orders that
distinguishes between relations and sets:

Definition. A posct is a sct S together with a relation § such that:
1) aSb = —bSa (antisymmetric)
2) aSbAbSec = aSc (transitive)

S is usually described as a scries of inequalities amongst the elements of S, such as
a < b, b < c. The transitive closure of these inequalities is § itsclf.

Definition. A lincar cmbedding of a partial order is a mapping m of S into the
integers such that a$b => m(a) < m(b).

We need to carefully separate those labels that will be arranged according to a partial
order and those labels that will be “shuffled” in a less constrained way. For this purpose
we introduce two new notions: active clements and boundary elements. Active elements
will be counted with a partial order, while boundary clements will be “shufled.” They may
appear in a partial order, but it is only to mark the edge of the active elements. For the
smallest labels we have the following definition:

Definition. An clement 8 is a boundary clemer ¢ if there are no clements a > .
(In the definitions that follow, the reader can supply analogous definitions for the
largest labels.) For a production like

S = [b<c<a]AqDBpe, 2.83
{a] D[be]

a is a boundary clement while b and ¢ are not. Since the subscripts on a nonterminal
represent the sialiest few labels we could extend these subscripts throngh more clementa.

x4
’

2 LABELLED FORMAL LANGUAGES

3

In the Jast production we could write B p with b < ¢ < d. In this case d is also a boundary
element., but to avoid adding d to the subscripts of IF we will usually write something like
cequation (2.83) and say that B has an implicit boundary element.

Definition. An clement is active if it is less than every explicit or implicit boundary
clement.

Thus, in the example above, b and ¢ are active elements.

Definition. A partial order is well separated if all clements are either active or
boundary.

Again. our example above is well separated. Well separa‘encess is crucial to the trans-
lation of grammars into integral equations. We will use differentiation and integration to
remove active elements and count them according to partial orders.

For purposes of derivation however, we need to be able to substitute partial orders.
When a string contains a nonterminal like Bjy.;, and we wish to rewrite the nonterminal,
we must identify the two smallest clements in the derivation of B. This is possible if B has
a production B — [4]... where £ is 2-smallest determined:

Definition. A k-smallest determined poset has k clements, ay,as,as,...,a; such
that ay < a3 < @3-+ < ax and all other clements in S are greater than ay.

For purposcs of the definition we include any implicit boundary points. This insurcs
that ay,a,,...,ax will be less than all labels, even those not involved in the partial orders.

Definition. (Substitution of Partial Orders) Let Q be a k smallest determined partial
order ov r a set Q with k smallest elements ¢ < g2 < q3 < +++ < qx. Let P be a
partial order over P with k (not necessarily smallest) elements py < pg < p3 < +++ <
Pk- Then the substitution of Q for py,pa,p3,...,px in P is a partial order R over
(P = {p1.p2,--.,px}) UQ consisting of P, Q, and some extra patching rclations:

1)p;<peP=2>¢<peRr
2)pi>p€ P =>q;>pe R (g acts like p;)

3)p<pi€ PAgi<q€ Q = p < q€ R (transitive closure across the
identification ¢; = p;)

Postponing for the moment the definition of label-controlled strings and derivation
steps, we can define ...

Definition. A labclled grammar is a five-tuple (T.z, N, S, P) consisting of
1) a terminal alphabet T,
2) a special symbol z € T,
3) a nonterminal alphabet N,
4) a start symhol S € N,
5) a set of productions P of the form

A GENERALIZED DEFINITION 33

C — alabel-cc .olled string (2.84)

where C € N.

A label-controlled string D is derived by the grammar if it is possible to begin with S
and obtain D after a finite number of dcrivation steps. -

Definition. A label-controlled string is a string over the same alphabet as the for-
mal language (N, z, T) where each nonterminal has a (possibly empty) collection of
superscripts and subscripts. The string is prefixed with two partial orders, onc over
the superscripts (enclosed in braces) and the other over the subscripts (encloscd in
brackets). The occurrences of the special character z in the string have at most one
superscript and one subscript. If two scripts are present, then one must be a boundary
element.

By insisting that at lcast one label of a doubly labelled z be boundary, the last definition
prevents the two partial orders from interfering with one another.

Definition. (Derivation Step.) The label-controlled string

{P}4] wFl(P""“P"} (2.85)

ajyaj...ax) v

derives in one step {R} [C] wGv if:

1) There is a production F — {Q}[B]G. where Q and B are partial orders
on the superscripts and subscripts of G.

2) Either
a) G hasno z's, j < 1, k < 1, and p,, a; arc boundary clements of P

and A. R is then the result of deleting py from P, and C is the result of
deleting a; from A.

b) Q is j largest determined and R is the result of substituting Q for
P1,P3,---,P; in P. B is k smallest determined and C is the result of substi-
tuting B for ay,a3,...,0x in A.

As the definition is writen, possibility 2.a is the only way that labels can disappear
from partial orders. This is adequate for the definition, but we will sometimes find it
convenient to have F derive a string of all terminals several of which are special characters.
The cssential point is that only boundary clements can disappear from partial orders.

Definition. A full derivation is a mapping of the labcls of a label-controlled string
(containing only terminal symbols) onto the integers 1 to n. The mapping must be a
lincar ecmbedding of both of the partial orders associated with the string.

[TV SNE TN

34 LABELLED FORMAL LANGUAGES
We turn now to the transformation of labelled grammars into integral equations, for
which we will necd to identify the active clements in the partial orders.

Definition. The translation of a string, {P}[A]w, with well scparated posets P
and A, is the product of

1) The number of lincar cmbeddings of the active clements of P.
2) The number of lincar embeddings of the active elcments of A.

3) The integral repeated as many times as there are active elements in P
and A, of the product of the symbols in w, each differentiated as many times as
there are active elements in their subscripts and supcerscripts.

Definition. The translation of a grammar is obtained by summing for every nonter-
minal V € N the translation of each production possibility for V, and setting this sum
equalto V. '

For example, the production

T — [A] S(a8)Z(c) Side} » (2.86)
with partial order
b e
A= (2.87)
a c d

has two boundary elements, b and e, and three active clements, a, ¢, and d, so the production
possibility is well separated. The translation is

T=6/// (s'). (2.88)

The above definitions make two, somewhat different, demands on the partial orders
used in the grammars. A derivation step requires that the partial orders be k-smallest
or largest determined in order to make substitutions. On the other hand, the process of
translation to integral equations requires that the partial orders be well separated. In fact,
the original grammar can be presented in a way that mects neither of these requircments.
If nccessary, we can always express an aberrant partial order as the union of several valid
partial orders, as we did with the tree example in cquation (2.9).

z EA.,‘ L

LEFT TO RIGHT MAXIMA AND MINIMA 35

2.4.1 Left to Right Maxima and Minima

Problem. How many permutations of 1 to n have j left to right maxima and k left
to right minima?

Permutations are encoded in the subscripts of the z's, with an I before each maximum
and s before each minimum. For example, there are six strings of length n = 3 with j =2
maxima and k = 2 minima,

slzysryzalzy slzalzz392)
slzgszylzqzq slzylzyszyzs (2.89)
slzalzyszize slzgszylzezs

The grammar,

T—{f>e¢f>g}la<ba<d ZI‘[{’)lz[{b’])R[(c‘;)

T—{e>fie>g}[b<aib<] 1}(‘]}”[(6{)3[(5)

al (2.90)
T — slz
R—zR I €,
is probably clearer if we adopt the convention that w marks the location of the largest label:
T —T"sz°R
T — T%z"R .
T - SII ‘ (a.gl)
R-—zR!c.

Permutations are decomposed based on the location of their smallest and largest elements.
The first production for T covers situations where the smallest element is to the right of
the largest clement; the smallest will be a minimum, so it is prefixed with an s. The second
T production handles those cases where the largest is right of the smallest. R generates an
arbitrary string of zs, for it is to the right of both the smallest and largest elements and
so can have no further maxima or minima.

The partial orders are well separated, so, using the translation defined above, we

discover
T= / / (T'sR) + f (T'IR) + slz
R=zR+1
_ 1
T 1-z
r=[[7 () +as (292)
= () r

InT =-(s+{)In(1 - 2)+a
T =cy(t - z)"('*‘) .

B R R P T R TR Ay

36 LADBELLED FORMAL LANGUAGES

We conclude that ¢z = sl since the only string with a single z has both a maximum and a
minimum at that z. The grammar cannot derive an empty string, so there is no constant
term in the Hinal generating function:

sl

T=———(1- z)mehH ~). (2.93)

To derive strings representing perinutations we nced partial orders that alre all 1-
smallest and 1-largest determined. This is not true of the last production of (2.90), but the
failure is easily remedied; we expand the production into several possibilities:

{5}
R e
R— {k>j}[h <]z} RIY
. . i} ik
R— {j > k}|i < bz} R

R~ {k>j}[i < bz} R

(2.94)

Now every production is 1-smallest and 1-largest determined. We can work a short example
by starting with the first production of (2.90),

{e> fie> g} b < aib < TiTsal P RIS, (2.95)

deriving a slz from the T nonterminal,

{e> fie>g}b<a;b<] slx[{:])sz{(bf)Rl{j} , ' (2.96)

and then expanding R with the production R — :z;((,{)):

{e> fie>g}b<a;b <] slz[(:])szl(bf])z[{:]} . (2.97)

There is only one way to label the remaining string that is consistent with Loth partial
orders:

slzgszyzq. (2.98)
The fact that there scems to be one possibility,

R— {j>k}[h <i)zf} R, (2.99)
missing from the productions for R is extrcmcly illustrative. First, notice that this possi-
bility is not a valid production. The special character z has two labels, ncither of which are
boundary clements of their respective partial orders. Second, notice that of all the possibil-
ities for R at (2.94), only the invalid production given here at (2.99) can be followed by the
replacement R — ¢, since ¢ and k are both boundary clements. In fact, if we apply R — €
to (2.99) we obtain the correct production B — :z:l(,i]} found in (2.94). So the rewriting of
R to meet the 1-determinedness requirements is hardly very mysterious after all.

C'IAPTER 3

ANALYSIS OF ALGORITHMS

In the past decade there has been rapid growth in a subspecialty of theoretical com-
puter science called analysis of algorithms. Research has focused on the careful computation
of average and worse casc running times for algorithms. This is to be distinguished from
mathematical theory of computation, which is more concerned with the logic and correct-
ness of algorithms, and computational complexity, where the analysis is aimed at breader
classifications like separating O(n?) algorithms from O(nlnn). By contrast, analysis of
algorithms cndeavors to find exact or detailed asymptotic expansions for the performance
of algorithms. On the theoretical side, this attention to detail leads to a great variety of
interesting combinatorial mathematics, while on the practical side it can determine such
questions as when an O(nlnn) algorithm surpasses an 0O(n?) algorithm. In this way the
analysis of algorithms spans both the theoretical and practical worlds of computer science.

Figure 3.1 below is a rough diagram of the process of analyzing an algorithm. There
are two paths. Across the bottom is what might be called the direct approach: within
the algorithin a quantity of interest is identificd, a recurrence relation is derived, and the
recurrence is solved, using manipulations of discrete mathematics. The other, seemingly
circuitous path through analytic equations and generating functions is often the easiest
method of solution, because once recurrence relations are converted to functional equations
the solution strategy is usually routine; we are solving quadratic or differential equations
rather than manipulating sums of binomial cocfficients, and so the techniques of real anal-
ysis can be cffectively applicd to discrete problems.

Labelled formal languages are uscful for shifting from the discrete domain to the con-
tinuous domain of real analysis. We have explored alrcady in Chapter 2 the conversion of
grammars to diffcrential equations, this is the transition in the upper left hand corner of
Figure 3.1 and undoubtedly the simplest step in the whole diagram. However, the analyst
needs to cxpress some quantity of interest in the algorithin nsing a formal language. This
requires cleverness—it is not an antomated step—but since the language of expression is
based on formal languages it is a natural means of expression for computer scientists.

B T U UHN VT SO N

SR e e b b Sl e ey i+ b 11 v e b . P AR et R

38 ANALYSIS OF ALGORITHMS

Labelled N, Anaitic w_ Generating
Grammars Equation " Function
\ 4
. Recurrence ~ oti
Algorithm — Relation > Solution

Figure 3.1 A Simplificd Picture of the Analysis of an Algorithm

The purpose of this chapter is to demonstrate the usefulness of labelled formal lan-
guages in the analysis of algorithms. To some extent this has heen demonstrated already
in Chapter 2, since variations of the classic gencrating functions appear frequently in the
analysis of algorithms. To press the point further, the examples chosen for this chapter use
labelled formal languages in a central point of their analysis, and use them in a way that is
more complex than the examples of Chapter 2. We will study cache memorics and search
trecs.

3.1 The Degree of Associativity of a Hardwired Cache Memory

Because a computer program is likely to make frequent reference to a small subset of
its total address space, computer designers have discovered that substantial cost savings
are possible with memory hierarchies. The idea is to put a frequently accessed subset of the
address space into a small, fast, and expensive memory. Most memory references will reside
in this cache memory, so the performance of the computer will be similar to a computer
whose whole memory is built in this fast expensive manner, while the cost of the computer
will in fact be based on a slower, cheaper main memory.

Fitting the whole address space into a small cache is difficult: one approach is to use a
fully associative cache that stores both the address and the content of each main memory
entry residing in the cache. The cache is capable of simultancously comparing a requested
address with the addresses of each of the entries in the cache. If the requested address
in present in the cache its contents are made available for processing, otherwise, a slower
process fetches the entry from main memory.

A second approach to caching saves most of the hardware necessary for parallel com-
parisons. Part of the memory address is used as an index into a table. Within a particular
slot of this table several memory entries are stored along with the remainder of their mem-
ory addresses. To scarch this table for a requested address we find the appropriate slot,
read the entire slot into a special arca and search the slot associatively for the desired entry.
This is pictured in Figure 3.2.

O b ot

THE DEGREEC OF ASSOCIATIVITY OF A HARDWIRED CACHE MEMORY 39

Address Contents ;
I | 11 i |

Cache

Address Contents Address Contents

m I |
i I |
nioc> | R — |]

l | | | I | |

1 1
| |
3 C []
| . |
v Comparison \V/
Hardware]

Figure 3.2 A Two Way Associative Cache Memory

The number of entries in each slot of the cache is the degrec of associativity. It
is a design parameter affecting both the performance of the cache, that is, how close it
comes to a perfectly associative scheme, and the cost of the cache since it determines the
amount of comparison hardware necded. Empirical studies indicate that very little is gained
by increasing the associativity beyond 2 or 4; however, we would like to understand the
functional relationship between associativity and performance. To do this we will use the
following simplified model.

Assume that a load of size L is chosen at random from the total address space. We
compute the performance of the load by inscrting the load items into the cache. Some slots
will overflow, in which case the extra entries remain in main memory. We assume that
the program references the load items nniformly at random. so the performance depends
on the amount of cache overflow. (This assumption makes the analysis independent of the
replacement algorithm, since “uniformly at random” ignores the gain of moving entries into
the cache after they are referenced. The locality of program reference is modelled instead
by a choice of small L.)

Under these assumptions we obtain an occupancy problem. If I is the index size and
A the degree of associativity then the corresponding occupancy problem involves loading

N U o ot 4t st 2T T it v o i i 4 ot ok B e bt . A b v 1ok R < o Sttt e et o L

40 ANALYSIS OF ALGORITHMS3
L numbered objects into I boxes, tagging each extra object after the Ath with an overflow
indicator.

Here is a grammar describing this process for A = 2:

S-—»ngSI(
Bg—*:tDBIIC
Bl’—*ano'G

By — 029 B, ! €.

(3.1)

The p’s separate boxes, the z's are the objects, and a prefix o indicates that an object has
overflowed. The grammar’s equations can be solved:

BO = g%
°F _ §
B = +1
ozo (3 2)
1 .
Bz=%—2——-§‘-'—2‘+2+1
1
S —_
1- ng
From this construction it is clear how the associativity affects the generating function:
1) One way.
e 1
Bi=—->-+1 (3.3)
o o
2) Two way.
e z 1
Bg=0—2—3-5—2-+z+1 (34)
3) A way.
oz A-1 A-2 A-1 A-2
N |
Ba=S z hd d d ~+1 (3.5)

AT oA-1) oa-2 T TaAta-yitay T

But it is not clear that we can obtain any mcaningful information from these formulas.
§ is a multivariate function of p, o, and z. The cocfficient of pf ’IL,- in S is a generating
function in o representing the distribution of overflow for load L in I boxes. We can gain
information about overflow by differentiating with respect to o first before we extract the
cocfficient of p! i—';:

(3.6)

Average overflow = 1 'ﬁ 3S(z,0)
ge o —'IL p L! aO D Z,

o=1

THE DEGREE OF ASSOCIATIVITY OF A HARDWIRED CACHE MEMORY 41

The equation is divided by all possible loadings of objects into boxes (I L) in order to obtain
& probability distribution. This is also accomplished with the substitution z « y/I:

L!

y“\ o
Average overflow = <p' -——> 5;5 (p,y/1,0)

o=1
L
_[yv\ 9 1
= (%) sbatu/1o)| (3.7
vt ;o1 @
= <Z—!>IBA(II/I,1) —a—oBA(y/I’o) ot
When o = 1, the expression for Ba(y/I,0) collapses nicely:
Ba(y/1,1) = e/ (3:8)
The complexity lies in
9 eroy/Iy/I_ AoA-».leoy/l, (y/I)A—l (y/I)A—2 ' 1
30 Paly/1,0) = 014 toa- P iesamgy Tt A
(3.9)

Putting this together,

L
Avcrage overflow = <yﬁ> Jevd-1/1 (e”/’% - Aev/!

(y/DA~t | (y/DA?
(yA—l)! A +’“+A)’

-+

(3.10)
thus for A = 2 we expect the overflow to be

L-2I+L(1 -1/ DE 2101 -1/D)*. (3.11)

A similar calculation, using the sccond derivative with respect to o, yields the variance.

For comparison of different A a realistic standard is the total volume V = Al. We
assume that the load is some proportion of this volume L = aV. As a — o0, L~V overflow
is expected, regardless of the associativity. For smaller a the associativity plays a more

~important réle. To examine this region we let V' — oo and approximate (1 - 1/I)E with
e oA;

A-1 A-2
L caaf 1 (L 2 (L
Average overflow = L -V + Ie (_——-(A “I\T + (A-2t\1 *

A5 (5)14) 0)

—a A)A-1 2(aA)A-? 1
=L-V+lIe A((&zl)!_l_ :A—)Z)! +...+A)+0(.‘.,.)_
(3.12)

7 g . .

42 ANALYSIS OF ALGORITIHMS

Two cascs are of interest. When a — 0, the overflow is exponentially related to the
associativity:

-aA A A+l MNaA A+2
Avcrage overflow = V (a -1+ ¢ (Ae"‘" - ade®? + (ad) + (ad) +))

A A+ T (Ar2)
_ e—uA(nA)A-Fl :
‘V(A(A T 1ﬁ") B(a),

(3.13)

where the error is constrained by

1< E(a) < (3.14)

1
(1-a)?’
For small a the most sensitive term in equation (3.13) is a4t!; so the percentage overflow
falls off dramatically with the associativity.

A sccond case of interest is when a = 1, corresponding to a cache pressed nearly to its
limit:

= _ ca ((eA)*1 (ad)A?
Averagcoverﬁow—V(a 1+e ((A—l)!+(A—2)!+ +1

e [(A-1)(ad)2 ! (A-2)(ad)A?
A (A-0r T (a-2) +"'+°))

o aA)A-2 (aA)A-3
=V(a—l+(1-—a)e A(((Alz)! + ((Azs)! +...+1)

onfad)A-?

+e)
_4 AA
=Ve oo

ra(o(2)

Here the percentage overflow falls off inversely with the square root of the associativity.

Depending on one’s temperament, there are two ways of looking at this last result.
Remember that the case @ = 1 causes a fully associative cache to work bcautifully, with
no overflow and full memory usage. The above result gives encouraging news: a cheaper,
four way associative cache is worse by only 20% overflow. However, the result also gives
disconraging news: when the load factor a nears 1 increasing the degree of associativity is
not particularly helpful. It is only when e is small and performance good anyway that the
degree of associativity has an impressive effect on the amount of overflow.

Let us pause for a moment to compare the augmented grammar approach with the
traditional analysis of this problem. Normally we would assume that the number of boxes
is large so that we could approximate the behavior of an individual box with the Poisson
distribution. (In fact, fragments of the Poisson distribution aj.pear in the above formulas.)
Then we would sum the expected overflow from each box to obtain an average overflow

BINARY TREE SEARCH 43

(a technique that wouldn't work for the variance). The chiefl advantage of the augmented
grammar approach is that it leads gracefully to a multivariate generating function that
contains all the important information, without approximations. Approximations can come
later in the process of understanding the asymptotic features of the distribution.

3.2 Binary Tree Search

A binary tree is a data structure used for the storage and retrieval of information based
on keys associated with entries in the tree. The data structurc is well suited for applications
where:

1) There are roughly the same number of inscrtions as retricvals.

2) It is difficult to predict how large the data structure will grow.

3) Average performaice is more important than worse case bcehavior.
4) The data structure resides in main memory.

5) It is helpful to know the order of keys.

If any of these criteria are not met then there are better options: when retricvals greatly
exceed insertions then a balanced tree schemnie is preferable. Hashing is used in cases where
the table size is fixed in advance, and the order of keys is irrclevant. When the data size
excceds main memory it is often bet.er to use a structure adapted to the computer’s page
size, such as B-trees. Nevertheless there is a distinct domain where binary trees are the
best known method of storage.

This section proposes a modification that is intermediate between balanced and un-
balanced tree scarching. Rather than completely balancing the tree, it only improves the
balance of the data structure; we will call it diminished tree searching. The domain of use-
fulness for diminished tree search overlaps primarily with the ordinary tree scarch domain
described above; and, as we will sce shortly in the analysis, it outperforms ordinary tree
search on the larger problems.

3.2.1 Diminished Trees

In ordinary binary trec search the tree nodes contain a left link, a right link and a key;
and the central loop of the search routine looks something like this:

while true do
if t1.key > sought then
if t1.left # nil then t «— t1.left else goto missing
else if t1.key < sought then
if t1.right # nil then t « t1.right else goto missing
else goto found
nissing: ...
found: ...

,li o

XN o e G e e T T

stuotue b o Enirn A

E_«...»..‘.».‘;_J._.»..mw,.-u, B B S RIS SO 1 v e et i i A s i i

44 ANALYSIS OF ALGORITHMS

Notice that there are two exits from the loop, one for a successful search, and one for the
unsuccessful possibility that the search enconnters a nil pointer. Since the loop will usnally
be execuced a logarithmic number of times it represents the largest asymplotic contribution
to the running time of the algorithm. The exits require only a constant arount of additional
computation and are therefore less important to the overall performance of the algorithm.

Recognizing this difference in cost, the modifications necessary for diminishing the
| scarch path are made entircly within the exit code, leaving the inner loop of the search in
its swift untouched form. To do this we introduce dummy nodes at the leaves of the tree:

Tree Node
left key right Accumulator
v | 0O] List

Figure 3.3 A Dummy Nodc¢ and an Accumulator

Due to the infinitely large key at a dummy node, the scarch loop will always turn left,
encounter a nil pointer. and take the “unsuccessful” loop exit, at which point new code
will pick up the right pointer and search the accumulator list for the desired key. 'The
accumulator is maintained as an ordered list, so if the sought key is missing and must be
inserted then shifting may be necessary to keep the keys ordered. The accmmulator also
has a fixed odd size. 2¢+ 1. If the arriving key fills the accummlator then the list is split, the
median key is placed in a new tree node, and two accumulators are created with ¢ elements
cach. This is depicted in Figure 3.4. The algorithmic details can be found in Appendix B.

ANALYSIS OF DIMINISHED TRLE SEARCHING 45

[NL] oo []

%

/]
™
N
N\
L. 1M1
(Ntf oo N LML) oo | N

%, N

Figvre 3.4 An Accumulator Splits

The accumulators allow the tree to grow in a delayed fashion. Those keys appcearing
in tree nodes are chosen after 2¢ + 1 keys are examined. This cxtra enlightenment means
that tree nodes will more evenly split future insertions into their subtrees and so diminish
the path length of the whole trce. However, we nced to study this change carcfully to
understand when path length improvements exceed additional accumulator costs and to
pick the best value of the parameter ¢.

3.2.2 Analysis of Diminished Tree Searching

For the analysis it is convenient to introduce the notion of an ordered heap. an object
that several authors have found uscful in studying binary trees [Burge 1072] [Frangon 1976)
[Viennot 1976]. A hcap is a binary tree with the labels 1 to n assigned to the nodes in
such a way that each node has a smaller label than all of its descendents. An example is
pictured in Figure 3.5.

406 ANALYSIS OF ALGORITHMS

Figure 3.5 A Heap

Search trees and heaps are related as follows. We take a permutation of 1 to n and
insert it into an ordinary binary search trec. At the same tite we create a heap with an
identical shape as the scarch tree, but we use the order of filling the search tree to label
the nodes of the heap. Figure 3.6 shows the permutation and search tree corresponding to
the heap in Figure 3.5.

2413

Figure 3.6 The Companion Search Trec and Permutation for Figure 3.5

Given a heap we can recover the associated permutation by walking the heap in infix
order. If the ¢th node in infix order has label § then ¢ is inserted into position j of the
permutation. There is thus a one to one correspondence between heaps and permutations
that will make heaps especially useful in analysis,

Let us begin our analysis by using heaps to study ordinary binary trees. The grammar
for a heap uses the box opcrator to insure that every node’s label is smaller than those of
its descendants:

S — zPIShiSh (€. (3.16)

Lk Rt e 00 o N e+ o e B e Wt

AR AT § ST M A TSR A L A e

114 PR o S M A R

Ay e

Gpid S

S e e e, w0 B BT g - v

Q3R 2R T ey B

ANALYSIS OF DIMINISHED TREE SCARCHING 47

And, not surprisingly, the solution of this grammar indicates that there are n! heaps of

size n:
§= / §*+1
1 (3.17)

“1-z°

Of greater interest is the path length of a heap. For any rooted tree the (interns1) path
length is defined to be the sum of the distances from cach node to the root. In the case of
heaps the path length is the total number of comparisons used to build the corresponding
search tree. Dividing by n, the size of the tree, and adding one for the last comparison,
gives the average number of comparisons for a successful search.

To analyze path length we add an index ¢ for depth:
S; — ¢'z°1S; 11 hIS; 1 1h | €. (3.18)

Each node z has been prefaced by a string of ¢'s recording its depth in the tree.

Converting this to an integral equation,
S; =q‘fS?+‘ +1, (3.19)
and applying the Q operator (Qf(z) = f(gz)) yields the the same equation as for Si4y:

Q&=¢Q[ﬂu+1

(3.20)
=g [(@Su)?+1.

This suzgests the conjecture QS; = S; , 1, which agrees with our intuition: any subtrce with

root at depth ¢ can be moved to depth 1§ + 1 by prefacing each node z with an extra gq.

For the whole tree we obtain the equation
So = (Q50)? (3.21)

which does not scem to have a simple solution. With the chain rule of diffcrentiation,
however, we can extract useful information from the equation. To obtain the mecan path
length, we differentiate with respect to g, sccking a generating function in z alone:

T(z) = %so(x,q) ot . (3.22)

The coefficient of z* in T(z), treated as an ordinary generating function in z, will be the
average path length of heaps of size ¢. (Ordinarily all generating functions in the labelled
terminal z are treated as exponential. In this situation the 1! is the normaiizing factor for
the probability distribution in path length.)

el e e S e e e L e

48 ANALYSIS OF ALGORITHMS

Differentiating both sides of (3.21) with respect to ¢ and using the chain rule reveals
an ordinary differential eqnation for T,

57 3 olz)| =25ulan0) [+ ot (3.23)
T = ¢ 2 - [z . _‘x), + T(z)] (3.24)
) 2z
(1 - I)T - 2T(I) = (1—.;5; . (325)
With integrating factor (1 - z)~32,
T(z) = (1 - I)"G(:)
G'(@) =
(3.26)
G(z) = —2111(1 -z)-2z
Inl-z)+z

(z) = ‘2—(—1‘_7)2——,

and we can recover the cocfficient of z* using a family of identitics, due to Zave [Zave 1976],
for powers of In{1 — z) over powers of (1 — z). In this case,

—In(1 -
T:—;)T‘ z;(Hnﬂ - 1)(n+1)2", (3.27)
n>0
so the expected path length is
2Hpsy — 1)(n—1) — 2n, (3.28)

and the average successful scarch will require

2H, - 3+ 2%’1 (3.29)

comparisons.

The intent of this section was to study diminished searching and yet so far we have
only managed to compute the comparisons for ordinary tree search. However, the steps of
the above analysis will provide a model for our analysis of diminished searching. Recall
that we:

1) Established a correspondence between the data structure of interest (scarch trees)
and another structure (heaps) that logged the arrival of clements of the frst structure.

2) Developed a labelled grammar and converted it to a differential equation in two
variables.

ANALYSIS OF DIMINISHED TRLUE SEARCHING 490
3) Removed one variable (using the @ operator, and the chain rule), and solved the
remaining differential equation for a generating function.
4) Recovered the cocflicients of the generating function.

These steps will be repeated in the analysis of Diminished Tree Search, but first let us
review some mathematics that will prove useful in the analysis that follows.

In the fourth step we made use of an identity of Zave. Here is the most gcneral form
of the identity:

~In(1 - 2))") ayfm+J
L____zf,_:m(nm,,-—ym....,y"‘ —115,,>)(m)z", (3.30)

— »)m+1 m+j
(1-2) =

where the angle bracketed superscripts indicate a truncated Ricmann sums,

1 1 1
k)
HY =1+ g+ g+ 4 0, (3.31)

and the polynomials P, are related to the Bell polynomials Y,
Pa(s1y+-18n) = (=1)"Yn(-51, —82,~283,...,—(n — 1)! 5,). (3.32)

We will make heavy use of two subcases:

L S UM L) (3.33)

—_ w1
(1-2z)m 5o m

In(1 - 2)) o (m A\
(T;":—;)Tn)l_ = g)((HMH ~ Hm)? - (”2).,' - Hm)))(7:]) 27, (3.;34)

in order to recover the coeflicients of generating functions.

In the third step we solved a differential equation,

2z
(1-2)?’

by using the inﬁrgrating factor (1 — z)2. Such a clean integrating factor was possible
because of the (1 — z) factor prefixing T'. In general, we can solve higher order equations
like

(1-2)T' -2T = (3.35)

a(l = z)3T" + b(1 - 2)*T" +c(1 - 2)T' +dT =0 (3.30)

as long as the power of the prefixing factor matches the ditferentiation of T. First we use
the change of variables v = 1 — z, and then we replace differentiation with the operator
Y= ".%’ so a term like ¥"T(™) can be expressed with a faiiiiyg factorial of the operator:
92T("), Equation (3.36) above becoraes

(mav2+b92-c9+d)T=0. (3.37)

L B b st Lt Tt 4 S b

LA S b e e L s e 1 a5 M 40 e s S 0 At A AR A e e bt o i ¢hom e 1L

PRt

50 ANALYSIS OF ALCORITHMS
In general we will have a polynomial of the operator applied to T
PW)T =0. (3.38)

Suppose we have a factorization of this polynomial and r is one of roots. The contribution
of a single root can be found using v* for an integrating factor:

(V-r)G=0
G=v'H
vIH =0
aH ~0o (3.39)
dv
H=k
G =k,

where k is a constant determined from initial conditions. If the equation is inhomogencous,
with a right hand side of v*, 8 # r, then the solution is still straightforward:

(P-r)G=v°
G=v'H
v'OH =v*
oH — y8-r-1
v Y (3.40)
ve-T
H=k+ (;'__ 7

r v.
G =kv +(s—-r)'

By combining these two solutions, we can sce the cffect of a simple root in a higher degree
polynomial. Let the polynomial have distinet roots:

P)=(-r)(d-r)...(0-r,). (3.41)

Then P(9)T = 0 can be solved by sctting G = (9 = r3)(9 —r3) ... (9 — r,)T. The cquation
becomes
P-rn)G=0 (3.42)

with solution G = kv™. Now the remainder of the equation is inhomogencous,
(O —ra)(9 —r3)...(9 - ra)T = ko™, (3.43)

but we can continue to strip factors from the beginning of the equation until we eventually
obtain k

R(ry)

Ve (3.44)

where R(J) = P(9)/(9 - ry), and the other roots contribute terms that are not shown in
equation (3.44).

ANALYSIS OF DIMINISHED TRUE SEARCHING 51

The solution of an inhomogencous equation with a right hand side of v" is slightly
more complicated:

(9-r)G =0
G=vH
vIOH ="
8H _ - (3.45)
dv
H=hv+k

G=vlnv+kv".
So we will also need to be able to deal with logarithms on the right hand side:

W-r)G=v'Inv
G=vH
v9H =v'lnv
% =v""'ny (3.46)
v "lny v '
H= (s—1) --(.s—-r)’-*-’c
v'lnv v* ’
G= =7 - (s—r)7+ku .

Once again we can combine these two solutions to see the effect of a single root that is
equal to the power of the inhomogeneous right hand side. We assume that the other roots

are distinct: ,
P@)=(0-r){d—rs)...(9—rn)

PO)T=v"
G=(W-r)9—rs)...(0 —ra)T (3.47)
(W-r)G=v"

G=v'lnv+kv".

Repeating this technique for the other roots modifies the constants on the contribution of
the first root until finally,

- v'lhnv - R'(ry) A _k____v'l $oes
R(r) (R(r))® Rl '

(3.48)

where again, R(9) = P(9)/(9 — r1) and k is a constant determined by initial conditions.

A b b s e 1 < A o 1 1 . S 50t o bt Ry ' AR Bt £V Nk 2 v - i 2 o v i i v A,

ANALYSIS O ALGORITHMS

(s)
to

With the mathematical preliminaries completed we can begin the analysis of Dimin-
ished Tree Search. The data structure is encoded with the usual [and h charactars for the
tree portion of the structure. The z characters are used for valid keys present in the internal
tree nodes. and y's are used for the dummy +oo keys in the leaves. The accumulator lists
appear as contiguous blocks of £'s, enclosed with b's and e's. Ignoring the labelling of the
z's for the moment, the following grammar encodes the shape of a diminished tree:

S — zIShISh | ylhl Ah

(3.49)
A= bzze ! brzze I bzzzze.

In this casc the accumulator parameter is ¢ = 2, so the accumulator lists will range in size
from 2 to 4. We assume that the tree always has at least ¢ keys.

Following the analysis completed already for ordinary tree scarch, the z's are labelled
with the order they were first inserted, rather than using the actual keys. The labels are
constrained by the construction process for the tree. Since a tree node results from the
splitting of an accumulator list of size 2t + 1, we expect that the smallest 2¢ + 1 labels of
the subtree (representing the first keys inserted) will be divided evenly: ¢ will appear in
the right subtree, ¢ will appear in the leit subtrce, and onc will appear as the key of the
tree node. The following partial order expresses the constraint on labels of a subtree:

f,g,h,... mno,...

Figure 3.7 The Distribution of Labels in Subtrees

Denoting the partial order by 8 we can augment the grammar so that it spcecifies a labelled
formal language:

S — [B]&1a1S 1) Al Smnojh | YRl AR

(3.50)
A — bzze | brzze I bzzzze.

The partial order 8 is well scparated: in Figure 3.7 g, f, a, m, and n are active, while
h and o are boundary clements. To convert the grammar to an equation we multiply the
number of lincar embeddings of 8, (*!)(¢ + 1), by a repeated integral:

¢ » {(2t+1)
s = (2 :l)(t+l)] (SEN)2 42t 2t 4o g 2%, (3.51)

ANALYSIS OF DIMINISHED TREE SEARCHING 53

For the moment we have dropped all of the terminal characters from this equation. A
superscript in parentheses indicates repeated differentiation unless it appears on an integral
sign, in which casc it signifies repeated integration. Differentiating both sides of equation
(3.51) yields:
2t +1

S+ = (:)(t +1)(80)?, (3.52)
with solution § = 1/(1 — z), indicating, as we would expect, that thcre are n! trees with n
keys, one for each permutation. The initial conditions that were prescat in equation (3.51)
but disappeared with the differentiation force us to modify the solution:

(3.53)

The first ¢ — 1 terms of the series are now absent due to the fact that the grammar cannot
derive a diminished tree with less than ¢ keys. In practice, of course, the algorithm starts
with an empty tree with one accumulator list that absorbs the first few keys. Once this
list contains ¢ or more keys, we can claim that all accumulator lists in the tree contain
between ¢ and 2¢ keys, so that the above grammar is valid. We could modify the grammar
to account for the initial anomaly, but it is easicr to use the unmodified equation with the
qualification that n > t. For n < 2t the algorithin behaves like an ordinary insertion sort.

Most quantities of interest in the analysis of diminished trec scarch are obtained from
suitable variations of the grammar proposed above. Suppose, for example, we are interested
in the number of nodes in a data structure. Ordinary trees contain one node for each key,
but diminished trees have dummy nodes with no key at all, and accumulator lists with
scveral keys. The number of nodes corresponds to the number of allocations during the
running of the algorithm— an operation that is often expensive in high level programming
languages.

To study the number of allocations an ¢ is added to the grammar at each point that

a ncw node is used:
S— [B]czla]lslfqh]hlslmm]h cylhchh

(3.54)
A — bzze I bzzze | bzzzze.
This converts to the equation
2t
§at+1) - (:' 1) (t+1)e(S®)? (3.55)
with initial values
S - czz! + czzl'l‘l +czzﬂ+2 4ot czzzﬂ Fooee (3-56)

which does not appear to have a nice, closed-form solution. Nevertheless, we can simplify
the problem by letting
38(z,c)|

T(z) = %0

(3.57)

e=1

U U P RN A

e e e e e e sl e Ay e o AL g 48 e s 3 A Tl £ PO 8 O ¢ o (A St S0

HE | ANALYSIS OF ALGORITHMS

The cocfficient of z* in T(z) is the average number of nodes in a trce containing 1 keys.
Differentiating equation (3.55) with respect to ¢ gives an equation for T

2
TR (-‘ , ‘) (£+) ((SW]e1)? +25W]-, TV) (3.58)
t!
SW|_, = gt (3.59)
2%+ 1 (t"? 2t

2+1) _

T = (t)(t ¥ 1)((1—-z)2e+2 + (1 - z)e+t T (3.60)
! !

(1 - g)3¢) 2{_2_‘_;%1)_-(1 —)T = (_2{_:":_:_)_ . (3.61)

Here §()|._, is obtained by differentiating the solution § = 1/(1 — z) of equation (3.52)
above.

The substitutions v = 1 -z, ¥ = v;% transform the last equation to a form we've
explored already,

!
P(9)T = -(—2—'—}1—2: . (3.62)
The polynomial of the operator ¥ depends on the parameter ¢:
Py(9) = 9221 4 (—1)t2(2¢ + 1)tEL 9L, (3.63)

This polynomial appears in the analysis of median of n quicksort (see {Sedgewick 1975]),
and will appear again in the study of other aspects of diminished searching. It is worth
diverting now to study the propertics of P,(9).

Since 9% can be factored from equation (3.63) we know that 9 = 0,1,2,...,t — 1 are
all roots of P,(9), leaving

P(9) = :95((0 -) 4 (-1)f2(2t + 1)'L‘) . (3.64)

There are other integer roots. Whencver ¢ is odd 9 = 3¢ + 2 is a root:

(9 -)l = (2t + 2)etL

3.65
=2(2t + 1)L, (3.65)

and J = -2 is also a root, following the observation:

(9 -)t = (-2-)2
= (—1)24(2e + 2)2 (3.66)
= (—1)H42(2¢ + 1)L,

s

ANALYSIS OF DIMINISHED TREE SEARCHING 55

As t grows large, we can express the falling factorials of equation (3.66) with gamma
functions and use Stirling’s approximation:

r-t+9+1) T(-t-1)

(-2t +9) TI(-2t-2)
e:-o—x(_t +94+ l)—¢+\!+l—1/2 e"“(—t - l)-:-x—n/z

_ -1
82"‘9(—2t+0)_2‘+‘,-1/2 - e2g+2(_2t_2)-~2‘—=—l/2 (l+0(t))
149 +1 -2:4+9-1/3
et (=t + 9+ 1)t (___ jt +_+;,_) = et (=t - 1) (14 O(t7Y))
942 neaia 942 2t-9+1/2 _ »
(1 t+1) ? 2t -1 =1+0(t7) (3.67)

2773 =140(t7Y)

So the other roots converge towards the points -2 & k%}% as shown in Figure 3.8, where
the smooth curves sketch the discrete trajectories of the roots as they were located with
MACSYMA's root finding algorithm.

The root with the smallest real comyp . ..ent makes the largest contribution to the asymp-
totic growth of the coefficients of the solution. In the case of P(9), 9 = —2 is the dominant
root, so it will prove useful later to factor ¥ + 2 from the polynomial:

(9 —)L (9 —2¢)
rpre Rl Ul e
. e (9-2-1)
=(9-t)t- (2t +2)(9-t)=2 5T
(3.68)
- : 7 t—-3 t l(2t+2)t+l
_g(17 (2t + 230 -) =L 4 (-1
This mecans that
P(9)=(¥+2) 195(2(-1)7' (2t + 2)i(v - j)‘:_f) . (3.69)
§=0

St Sa8 e e I {1 i ket 10 et e e i s ARt s £ e S i A B 5 it i e S v e T 2 AR

90 ANALYSIS OF ALGORITHMS

151 ——
10§ ——
/
51 ——
¥ f ¢ ¢ ¥ & N I I I l Tl
5 10 15 2 25 %
51 ——
10 ——
5§ ——

Figure 3.8 The Roots of Py(9)
Several constants related to the P(9) polynonials will also prove useful. Let

R(9) = %";2). (3.70)

We wish to compute R,(-2) and R}(-2) in order to apply cquation (3.48). Using L'Hépital’s
rule these quantities can be expressed in terms o P (d):

R(-2) = Pi(~2)
(9 +2) P (9) — P(9)

(-2 = (9+2)2 -
_ (9+2)P"(9) + PI(9) - P!(¥) (3.71)
- 209 + 2) s
_ P"(—-Z) .

2

ANALYSIS OF DIMINISHED TREE SEARCHING 57

Since P (9) is the difference of two falling factorials of ¥ (sec equation (3.63)) we can
compute these constants once we compute the derivative of a falling factorial:

9L = <§’T> (1+2)°

3 5 _ Zj] K]
aoﬂ-_ <j!>(1+ z)¥ In(1 +2)
= (~1)7* (Hymg-s = Hogoa)(i = 9~ 1) (872)
9 . |
—_— gl = — v 2
0630 <].!>(l+z) In(1 +2)
. o . ,
= (=) ((Hj-0-1 — Hoo-a)? = (HDy_ -~ HT) (=9 - 1.
For 9 = -2
0 i = (—p)i+! 1)t
33 = (-1 (Hj - G+ 1)
9=-3
" (3.73)
397 o2 = (-1 ((Hjr1 - 1) - H;?l +1)(G + 1)
9=-2
Assembling these results gives the constants of interest:
Ri(-2) = (2t + 2)! (Hae+2 — Heyi)
2t + 2)! (3.74)
Ry(-2)= (2) (H2y = Hiya + HiDhg ~ H)) + Re(-2).

Returning to equation (3.62) for the number of nodes in a diminished data structure,

the careful study of diffcrential cquations and P (9) row bears fruit:
2t + 1)!
P(9)T=- _(__iv'._)_

3.75
k _,_(2t+1)!v_l (3.73)

R(-2) P[-1)

The constant k is our remaining concern. Recall that k appears after the first root, 942,
is factored from P%(9), leaving the equation

T =

(2t +1)!

R(9) T =kv - .

(3.76)

We can use the initial conditions to compute R(9)T]y=1 and thereby find a value for k.
The first few terms of S,

S=cdzt + Pttt P e, (3-77)

E;,L,,m._.'mu.. Ak 41008 = v R e 4 N b . 2t 5 st R At 0 5 i bt e et S 5 on e oo et e ot ot 1 S«

58 ANALYSIS OF ALGORITHMS
give the first few terms of T
T=22" 42, 4 o220 (3.78) f
So initially we know:
Npy=10 0sj5<t
TY(0) = {21.! t<j<at (3.79)
Or, changing variables and using the 9 operator
; 0 0<s<t
i — . =
By rewriting R, (9) slightly we have
t . . o
R;(9) =) (-1)(2t + 2)f 92t (3.81)
i=0
so that .
Ri(9) Tlo=1 = D _ (2t +2)22(2t - 5)!
i=0
: 1
= 2(2¢ + 2)! - ;
(2t +2) ;} Gtrz-J)@i+1-7) (3.82)
1 1
=22+2)! [— - ——
(2¢+2) (t+1 2t+2)
=2(2t + 1)!.
Solving for k:
k=Ri(I)T|y=y + (2t + 1)!
= 3(2t + 1)1,
gives a dominant term of '
3 1 —2
= v 4., 3.84
2t+2 Hap g — Hyyy (3.84)
which expands with the binomial theorem:
(@) T = — L (n+1)+ofm). (3.85)
2t +2 Hopyg — Heyy

So the number of allocations necessary to build a diminished tree is proportional to the
number of keys and when ¢ goes to infinity the allocations fall off inversely with ¢.

S

S Bt i«

ANALYSIS OF DIMINISHED TREE SEARCHING 59

The o(n) error term on equation (3.85) is necessarily weak, since this estimate depends
on the other roots of Py (1) and some of these roots are migrating (as t — oo) towards points
with — 2 real part. In practice. however, the real part of these migrating roots is still positive
when t = 9, as shown in Figure 3.8, and further analysis will suggest tha: we would never
want an accrmulator as large as 19, so we may safely use an error estimate of O(1) in the
above formnla.

Another quantity of interest, the total memory usage, is closely related to the total
mumber of nodes in the data structure. There are two approaches to the analysis. The
more systematic approach uses a modification of the above grammar:

S — [B]m3z i)l § 7 nihlS mpoph | mPylhim* AR

(3.80)
A — brre l brzze I bzzzze.

The amount of memory consumed appears in the exponents of the m's: 3 spaces for a tree
node and 4 spaces for an accumulater. In general, an acenmulator takes 2¢ spaces, although
it is sometimes easier to program with 2t + 1 spaces so that the accumulator can graccfully
absorb (2t + 1) keys before splitting.

The technique used hiere deserves highlighting. We have sceded the original grammar
with a dummy variable, m, raised to the power of a quantity of interest, in this case the
amount of memory used. We will repeatedly use this technique to study other quantities
of interest, such as comparisons and memory probes.

The conversion and sclution of grammar (3.86) is alnost identical to the node counting
grammar just solved, so it is omitted. The average amount of memory uscd to store n keys

turns out to be:
t+3 1

iv1 s~ i (n+1)+o(n). (3.87)

Comparing this with the 3n memory required for ordinary tree scarch, we see that the
memory usage iricreases to 27473 for t = 1. but then shews improvement for ¢ > 1, converging
to 15n ast — oo, a savings of §2%!

An alternate approach to this analysis relates nodes and memory usage, so that only
one of the last two computations is necessary. A diminished tree will always have an
odd number of tree nodes. call this 25 — 1, of which j are dummy nodes and j — 1 are
internal nodes. The 37 dummy nodes have 7 accumulators as right descendants. We can
compute the total number of nodes, nodes = 35 — 1, and the total amount of memory,
memory = (6 + 2t)5 — 3, and then relate the two quantities:

memory = E—.;—?-t-) (nodes +1) — 3. (3.88)

Since this is a linear relationship, the mcan and variance of these two quantities are similarly
related.

e e+ e o e . P TR s e e e b A e i e £ e e it B 50 S v b e g i St 5 v gt i

60 ANALYSIS OF ALGORITHMS

The next analysis presents fresh diffienlties, but it also answers a critical question
about the usefuluess of the new data structnre: on the average, how many comparisons are
required to find a key in a diminished tree? This involves studying path length in much
the same way we studied paths in ordinary trees, using an index on the nonterminals to
record their depth within the tree:

Sk = [Bla"7 o 1S 1ign AlSk timnoth | yIRLAR

, (3.89)
Ak_.bqlulzqkt')l,c bqk lquQZqu.beClbqkfquk+2zqk§31qk+dze.

Each z in the tree is prefixed with g raised to a power equal to the number of comparisons
3 necessary to find the key stored at that location. The total number of ¢'s in a tree divided
: g by the nunber of keys is the average successful search time for the tree.

The granunar converts to an equation,

2+ 1 (3e41)
sc=at (U esn [T sy

+qtk¢(';‘)zt +q(t+l)k‘(';')z“’ +...+q7"“(n;')zn,

(3.90)

where Sy is a function of z and ¢q. Applying the Q operator to this equation we find that
‘ @Sk = Sk.1, 5o by the fixed point theorem of Chapter 1, S can be expressed as a function

of itself: (2641
. 2t +1 * . 2
si=a* 7 wen [T (@sgw)
(3.91)
+ qu(';‘)zr + qul#(';’)zul Foeeedt qzu(";')zzx .
This has a differential form
: 2t +1
st = ,,(N)(t +1)g*Q(sW)? (3.02)
with initial solution:
Sl = q(‘;‘) lz(-+ q(‘;s)—lzt"l +---4q ";‘)<112‘ 4 oeee, (3.93)
To find the mean of the total path length we let
d
= EESI -1] (394)
and then differentiate equation (3.92) with respect to g and set q = 1.
(2t+1) +1 (N2 4 pelt) (nat 1 4 m(t)
T =7,)+ n{ @+ 1)) 4280 (28t 4 T0)) (3.95)

Here we have used the chain rule to differentiate Q). Once q is set to one S§; becomes
S = 1/(1 - z) and can be replaced using the formula:

t!

(0 . =
S (l-:r)”’"

(3.96)

i T s e i G st

e i i e B i e, i

ANALYSIS OF DIMINISHED TRLE SEARCHING 61
This yields

2 (t+1)z
T = (2t +1)! ———+1+(2t +1)! (———————+)2

And with the substitutionsv =1 -z, and J = v(—;i we find a familiar form of differential

(1-z)207O D 924 q) 2 (1 - 2)'T (3.07)

cquation with a familiar polynomial P(9):

ST = (2t +)(2:+1 2(t+l)(l-—v))

v3

v

= (2t + 1)t (2‘:“ 2 1) (3.08)

P,(9) = 9221 4 (—1)t2(2t + 1)LELgL,

This titne however there is an inhomogencous term, —(2¢ + 2)! v=2, with an exponent that
matches the dominant root ¥ = —2 of P(9), a situation dealt with in equation (3.48). This

gives a leading term of
v3nv

R(-2)
Replacing v with 1 — z and applying Zave's identity yiclds

—(2t+2) + - (3.99)

1

Horo—myy Hnet = 1{n+ 1) +ofn). (3.100)

(") T =

Comparing this with the leading term of egquation (3.28), 2(Hn41 — 1)(n — 1), we see
that when ¢t = 1, diminished searching alrcady shows an advantage (12/7 versus 2 in the
constant) over ordinary scarching. For large n this is a 14% improvement in the number
of comparisons necessary for successful scarching. As t grows large the lcading constant
converges to 1/1n 2, a 28% improvement in the number of comparisons.

However, we must not rejoice prematurely since the next, linear, term in the expansion
can have a dramatic effect on the uscfulness of the algorithmm. Compare

2NInN +2N (3.101)

with 12
—_TNln N +6N. (3.102)

While the second formula is asymptotically 14% smaller than the first, the break even point
is larger than a million. Fortunatciy i break even point for diminished scarching is
considerably smaller, but in order to satisfactorily analyze the algorithin we must compute
the constant in the sccond term of the expansion.

To obtain this constant we return to the solution of the differential cquation. After
¥ + 2 is factored from the cquation there is an undetermined constant, k, in the remaining

cquation:

R((9)T=-(2t+ o)vl_"_ﬂ Fo+ (2t:1)l

(3.103)

§
2

AR L s

62 ANALYSIS OF ALGOIUTHMS

When the other roots are removed, k remains in the solution:

(2t +2) Inv
7= Y gy
Rz wr Tt

R L, k1
Re(-2)? v? Ry(-2) v?

(3.104)

The constant k is found by sctting v = 1 in equation (3.103) and computing R,(8)T}y -,
from the initial conditions. Based on cquation (3.93) the first fow terms of T are:

(5) (3o ((5))

This gives initial conditions of

: 0 0<y<t
(5) - , =
TU)(0) = {J.!((,;g)_l) t<j<, (3.106)
or

HT|yoy = 40 : 0sj<t 3.107
That =3 -1) t<isu (3.107)

We can now compute

t
R()T|y=y = Y _(-1)7(2t + 2)202=IT|,
=0

= ;0(2: +2)4(2t - j)z((” - 2’ + 2) - 1) (3.108)

t+1 1
_ ' —_—— e ——
(2t+2).(3 2”2).

So k is given by

k=(2¢+2),(u§1-§;ﬁ)-(2¢+1),

t+41 1
STYIREN] S S S
(+2)() t+1)

Then by applying Zave's identity to equation (3.101), and using the results R,(-2) and
R{(-2) computed already, we get the desired solution:

(3.100)

1
YT = (Hnoy - 1)(n+1) +
=" Haya - Hux(st =N{n+1)
- 1 t+1 _ H2t+2 _ Hl+l +14 1 H;?-)&Z —Ht(?)l _ 1 (Tl+ 1)+0(ﬂ)
IIZM?‘H(*] 2 2 2 2H2Q+Q—Hg.(1 t+l ’
(3.110)

ANALYSIS OF DIMINISHED TREE SEARCHING 63

The table below summarizes these constants for small values of t. The break even column
on the right shows when an accumulator of size ¢ proves better than an accumulator of size
t — 1. For t = 1, the algorithm performns better than ordinary tree search once n exceeds

20.

Half Accumulator Cocfficient of Cocfficient of Break even n
t (Hos1 = 1)(n+1) (n+1) twitht—1
No accumulator 2 -1 -
1 -l;lg ~ 1.714 —g ~ —.245 20
2 (—5-9- ~ 1.622 %:% ~.212 210
; 0 | 0 | s
4 %z—;g ~ 1.549 %%% ~ 1.178 1.5 x 10®

Many quantities of interest can be analyzed in a way similar to the analysis just
completed. For example, perhaps the most realistic estimate of the cost of successful
scarching is the number of memory references made by the algorithm. The diminished tree
algorithm wastes 3 memory references on the dummy nodes but then recoups some of this
loss on the lincar, one probe per key, scarch of the accumulator lists. If we assume that one
probe is nccessary to find the root of the tree, then the appropriately weighted gramnmar

180

Sk = 1819215k 1117gn FSk + 1jmno] | yIRLAkh ~
(3.111)

A — bq2k+3:q2k+4zc [bq2k b31q2k+4zq2k H’Ie I bq”‘”zq”‘“zq”‘”zq”"re.

This time the infinite sct of equations is resolved with a double application of the Q operator,
Sk+1 = Q%Sk. The average number of probes for a tree of size n turns out to be:

2

— e (Hp 1 — 1)(n+1
H:c+2—H¢+x(= 1))

4 @ ()
1 t+1 Hy' g - Heyy 3
* Haya = Hen (2 t Maea - At 2”2:1 2-Heyy t+1 (".*‘ 1) +o(N).

(3.112)

To study comparisons in unsuccessful searching, we insert ¢'s between each of the nodes
in the accumulator lists. Any new key will land in one of these slots, and the exponent of
the ¢ will encode the number of corparisons used to locate the correct slot.

Sk — (Bl Sk 41kl Siiy | yib ALK

Ak — bqki-lzqk+22qk ”c I bqk+lzqk421qk4 Squ1~3c I bqk+lzqk-1 zqu+3zqk+dzqk+le‘
(3.113)

ity

61 ANALYSIS OF ALGORITHMS

This set of equatious is resolved with the operator ¢ Q, and the generating function has
cecfficients

1
——— (Hpyy — 1) (n+ 1) +
M=oy (e = (4 1)
4 (2) (2)
1 t+1 1 3 1 Hy - HY 1
= - H - = - 1).
ey Al W R R R vey il =) Ll

(3.114)
Dividing by n + 1 gives the average number of comparisons in an unsuccessful search.
Equation (3.114) compares favorably with a similar quantity for ordinary tree search:

2(Hpey - 1)(n+1). (3.115)

However, the most interesting quantities for unsuccessful searching are the memory
rcads and writcs, especially in cases where the accumulator lists arc splitting. Treating
writes separately from reads, we obtain a grammar for writes:

Sk — [B]zlSk1hlSks1 | ylhlAkh
(3.116)
Ax — buwdzwzwe l bulzwdzwlzwe | bwdH gt P g3t 1y 3+ 10 5y 1410

Most of the w exponents correspond to moving segments of the accumulator lists and
writing the new key. But when the accumulator is full there is an extra cost for creating
new tree nodes and copying half the old accumulator into a new accumulator. This is 11
in the above formula, and will be ¢ + 9 in gencral (¢ for copying half the accumulator, 6
for writing the ficlds of two new dummy nodes, and 3 for rewriting the old dummy node
and its pointers so that it contains the median key). Solving (3.116) yiclds a generating
function with cocflicients cqual to the average number of writes:

1 t+1 1 4
+ - 4+ — +1). 3.117
Hrra - Hort (2 2+t+1)(") (3.117)

This is slightly worse than the 4 writes required for ordinary tree search.

M mory recads are set up as follows:

Sk — |8zl S .1kl Sky1 | ylhI ARk
Ap — bg?k 1424 a2k 44, I b2k 83k 15 a2k 152k 4S, (3.118)

qukom:zqzkwnr 2k+0+3: 2k re»:z 2k+a+se.

q q q

In most cases the algorithm will use 2k + 2 reads to reach the accumulator, and then it will
read the entire accumulator, cither to find the proper location for the new key, or to move
the keys that were not searched. When the accumulator is full, there is extra reading (3
probes in equation (3.118), and ¢ + 1 in gencral) to remove the median and the larger half
of the accumulator.

SV PCIIE SRR SR X7

ANALYSIS OF DIMINISHED TREE SEARCHING 65

This family of cquetions is resolved with ¢?Q?, and solved with the usual techniques:

2
oo (H -1){n+1)+

Haeyg — Her (Hnes =20+ 1) ;

1 5 . Hi, - HY :

|+ D)+ Hyya-3He+ 5+ | .

Hygpa — Hepa ((- Y+ Huen 1727 Haga— Hupy 3

(3.119) i
This is to be compared with j _
4(Hnss -)(n+ 1)+ (n+1), (3.120) 3

for ordinary tree search. To get the average number of memory reads we divide these
equations by n + 1.

Without knowing the exact costs of various machine opcrations and the nature of the
compiler used it is difficult to make a precise reccommendation for the use of diminished
searching. The figures below summarize break even points for some of the factors likely to
affect the problem. They are based entirely on memory reads and writes and the assumption
that they both cost one unit of time.

O = Ordinary Mn = Medianof n

33 80 leoo

100 % \
Percentage of
Successtul
Searching

50 %

M7
0] M5
0% 780 4,500
1 10 100 1K 10K 100K
Number of Keys

Figure 3.9 Break Even Points and the Ratio of Successful and Unsuccessful Searching

B A PN

N A o e 38 o e b s 1 Kk D T < s L b et e300 s 0t ot e . by

66 ANALYSIS OF ALGORITHMS

0O = Ordinary Mn = Medianofn

6

10 \\

Cost of All ti Mg
ost of Atlocation

{Memory Accesses) \\

5 N

84 41,000~
M7
@)
0 \
780 \\, 4,500
1 10 100 1K 10K 100 K
Number of Keys M5

Figure 3.10 Break Even Points and the Cost of Node Allocation

Of course the exact choice of algorithm depends on a combination of the equations
of this section with appropriate cost estimates. Nevertheless, these figures give us a zood
perspective on the design space of the problem. Notice that median of 3 is completely
skipped; it is better to use cither median of 5, or ordinary tree scarch. This jump was
anticipated by equation (3.87), showing that total memory use increased for median of 3;
it appears that mcdian of 5 is better for both access time and memory use.

The designer should be particnlarly sensitive to the way memory is allocated, since this
can significantly affect the choice of . With a simple stack allocator the best choice of ¢ is
usually 2 (median of 5). If a complicated memory manager is used, then larger values of ¢
will greatly reduce the number of allocations (soe equation (3.85)), decreasing the constant
on the lincar term, and shifting the break even points. In the region of 1000 keys, a choice
of t equal to 3 or 4 becomes attractive.

Finally it is worth noting two features not shown in Figures 3.9 and 3.10. These
fignres show break cven peints between algorithms— not points of substantial advantage.
To obtain a point where half the asymptotic improvement is realized, a good rule of thumb
is to square the break even point.

The figures also ignore improvements due to block memory access. Many larger systerns
fetch blocks of 4-8 words from main memory, and have fast instructions for moving blocks
of memory. Both of these features harmonize well with diminished tree scarching.

R 5 v i ot A 0 e R

CHAPTER 4

GENERATION AND RECOGNITION

While the previous chapter used labelled grammars to analyze algorithms that were,
at least on the surface, unrelated to labelled formal languages, this chapter is dcvoted to
algorithms that opcrate dircctly on the grammars. Since a grammar describes a family of
combinatorial objects, it is reasonable to ask all the standard questions about that family:
Can we gencrate a member of the family uniformly at random? Can we gencrate all
members of the family? Except we ask these questions in a more general sctting: Can we
build a system to accept an arbitrary grammar and then generate all objects, or generate
objects uniformly at randoin from the specified family?

Such a general-purpose system is possible. It takes as input a labclled grammar, and
then provides a number of functions related to the grammar. These functions fall into two
categories. The gencration category includes:

1) Computing the size of a specified family of combinatorial objects.
2) Selecting an element by rank within such a family.

3) Generating an clement uniformly at random from the family.

4) Gencrating all elements in the family.

The specification of a family has two parts. The grammar provides what might be
called a shape description; it could, for example, constrain the strings to represent permu-
tations in cycle format:

P —CSbP|e
C—-zR (4.1)
R—zR l €.

The user must also provide a size description, that is, counts of critical characters in the
string. For this grammar the user might specify 3 b's and 6 z's. With both a shape and a
size description a gencral system can count the family members (there are 225 permutations
of 6 elements with 3 cycles) or gencrate instances at random (such as z; rozgbrszsbz 4b).

Hereafter, we will refer to those characters whose occurrences are of intercst as critical
characters. In the last example z and b are critical. The number of critical characters is
the dimension of the problem, and the counts of critical characters in the size description
formn a characteristic vector. By couvention, the count of the labelled character will appear

ARG Wl it &+ o -t b Rk S e ek 18 23 A8ty a0 Tl o8 S i S e s e

08 GENERATION AND RECOCGNITION

in the first component of the vector. Returning again to the above example, we have a two
dimensional characteristic vector (6,3).

The second, recognition, category is, in a loose sense, the 1verse of the generation
category. It includes:
1) Testing if a string can be derived with a grammar.
) g 8

2) Ranking a string within a specified family.

Tor example, @ tester would reject z3z1bz2b since it cannot be derived with the above
grammor, while a ranker might give z;723b1496 a rank of 2 within the family of permutations
on threc elements having two cycles. The rank has no absolute meaning; we do, however,
expect that cach member of the family will have a different rank, and that the ranking
function of this category is an inverse of the selection function of the preceding category.

These generation and recognition problems have received considerable attention in the
literature. There are special purpose algorithms for various combinatorial objects, and
general frameworks for large classes of problemns [Nijenhuis 1078] [Wilf 1977 and 1978]
[Williamson 1976]. The interest stems from numerous applications: Hypotheses can be
tested with complete scarches. Algorithins can be studied empirically with random input.
And sclection and ranking algorithms can serve as perfect hash functions.

Thie general-purpose algorithms of this chapter capitalize on the close connection be-
tween labelled gramimars and generating functions. Since the algorithms are closely related,
we will begin with the simple counting problem and then explore the difficulties presented
by more complex functions. The descriptions below are restricted to labelled formal lan-
guages with the box operator. All the algorithms generalize to more complicated partial
orders, but the details would obscure the basic features.

For purposes of exposition it is also helpful to restrict the grammars so that the right
sides of all productions have cither two nonterminals or a single terminal. The start non-
terminal is the only nonterminal that can derive an empty string, and in these cases, the
start nonterminal cannot appear on the right side of any production. For ordinary formal
languages, a grammar in this restricted format is considered to be in Chomsky normal form.
There arc algorithms to remove ¢-productions, eliminate chains like A - B, B — C, and
C — D, and break up larger productions that will expand the grammar by no more than
squaring the number of productions, and will not introduce ambiguity into an unambiguous
grammar. (Sce [Harrison 1978; Chapter 4].) These same algorithms will work for labelled
grammars as long as we take some care when we break up larger productions with the box
operator. The production P - QRSOTU, for example, is equivalent to

P—-Qr¢
P, — RP§
Pg—»SDng
Py - TU.

(4.2)

In general, we can decompose a large production into any binary tree of two nonterminal
productions, and then box every nonterminal on the path through the tree to the boxed

GENERATION PROBLEMS 60

clement of the original production. If boxes are handled this way, then the traditional
algorithms for converting arbitrary context free grammars into Chomsky normal forms will
also normalize labelled grammars.

4.1 Genceration Problems

4.1.1 Counting

Chapter 2 developed the direct correspondence between labelled grammars and integral
cquations in order to solve the equations for closed form generating functions, or at least
to recover information analytically from the equations. In this section we are interested in
solving thesc equations mechanically for specific terms of the series expansion. This can
be done by iterating the equations (in a carefully chosen order) until the desired solution
is reached, but before we explore the method of iteration, we need to understand the basic
computation step. Suppose that the nonterminals of the grammar are P,Q,R,..., and
that the terminal characters z, @, and b are critical (z being the special labelled character).
Each nonterminal will have a three dimensional series expansion:

z

J
P(z,a,b) = Y P 5 a*b!, (4.3)

3k

with integer cocfficients in a matrix P associated with the nonterminal. The (5, k,1) entry
in P is the number of different strings derivable from P having j z’s, k a's, and { b's.
A production ke P — QR indicates that the convolution of the Q and R matrices will
contribute to the terms in P:

ijl — Pju + z (;) Qmnol; -mk-nl-o- (4'4)

m,n,0

Notice that the convolution has an extra factor (i‘). Hercafter this will be called the split
factor, since it accounts for the splitting of labels between the nonterminals. In general,
the split factor depends on the box operator. If @ is boxed in the above production then
the factor is ("“"_ll), or if R is boxed, the factor is (’;“). Boxing removes onc from the
corresponding term (m or j — m) in the binomial coclficient.

Equation (4.4) above highlights one of the difficultics of computation. Pji can depend
on most of the matrix entries in Q and R, so we must compute all the matrices together.
One way to avoid conflict is to compute the entries in an order that always increases the
sumn of their components. Every location (j, k,I) with j 4k +1 = t is computed before any
location with § + k+1 =t + 1. However, this order does not resolve all the problems that
can arise. Returning again to equation (4.4), if we have Qopo nonzero, then Rjx should be
computed before Pji. So even within a particular location we must follow a special, safe,
order of computation among the nonterminals.

To find the safe order we identify those nonterminals, like Qgog above, that can derive
strings that are free of critical characters. Such strings will be be called pseudo empty.
Algorithms that identify nonterminals that derive psendo empty strings are well known,

e, 4 T

70 GENERATION AND RECOGNITION

althongh they appear in the guise of computing functional dependencies [Uliman 1980], or

testing for emptiness of a language {Aho 1072].
Definition. A safe order of computation is a lincar embedding of the following partial
order: Ny < N; (read N; precedes Nj) if there is a production N; -+ NNy or
N; = NiN; and Ny derives a pseudo empty string.

If there is a cycle in the partial order, e.g. Ni < Nj < Nx < Ny, then the count is ill defined;

the cycle generates an infinite nunsber of derivations with a fixed number of occurrences of
the critical characters.

Altogether, we have described the following, iterative, approach to computing the
nonterminal matrices:

for t «— 0 to oo do
for j —~ 0tot do
fork—0tot-jdo
begin
le—t—7—k;
for cach nonterminal P according to the safe partial order do
compute Py using equation (4.4);

end

The running time of this algorithin can be expressed in terms of

d The number of characters critical to the counting
n The number of nonterminals
m The maximum number of occurrences of any given critical character.

For most applications d and possibly n are small fixed constants, while m grows large and
has the greatest impact on the space and running time of the algorithm.

The parameter d is the dimensionality of the problem. Each nonterminal has a d-
dimensional array of coeflicients, with m being the maximum coordinate in any dimension.
Thas the space required is O(nm?).

The time necessary to fill the arrays is O(nm?%) since each of the O(nin) entries
can require an O(m) convolution of two series whenever there is a production with two
nonterminals on the right side.

SELECTION AND GENERATION AT RANDOM 71

4.1.2 Selection and Gencration at Random

The next step in difficulty, beyond counting derivations, is to produce strings derived
by a grammar. If we anticipate that the typical user will first specify a family of objects
with a grammar, and then make nuinerous requests for random or sclected members of
the family, then our cfforts should be directed at streamlining the latter process. For this
reason the exposition of the section is reversed. The section begins with the doscription of
a walk structure that is well adapted to random generation and selection problems. Every
combinatorial family has its own walk structure and this is used repeatedly and cfficiently
to generate strings. Only later in the section will it become clear how to create a walk
structure from a grammar.

Labelled strings are generated by a walk procedure that traverses the data structure.
The procedure has two arguments, an integer ¢ specifying the string (or substring) to be
generated, and a list of labels that will appear on the special characters of the generated
string. For the first call to walk, ¢ is specified by the vser {in the casc of a selection request)
or gunerated at random. We initialize the label list with 1...5 where j is the number of
special characters expected in the output.

The walk structure is a binary tree with two types of nodes: trivial and drastic. All
nodes contain an integer v, specifying the number of different traversals that can originate
at the node, and possibly two pointers to descendant nodes. Trivial nodes are depicted as
diamonds in the figures that follow.

Figure 4.1 Trivial Nodes

When the traversing procedure reaches a trivial node, the integer carried by the pro-
cedure, ¢, should be in the range 0...v — 1. A comparison of ¢ with the value of the left
descendant, vy, determines the direction of the walk: if ¢ < vy the procedure traverses the
left descendant, otherwise ¢ is replaced by ¢ — v and the right descendant is traversed.

A drastic node can also have two offspring, but in this case both descendants are
traversed. Each drastic node corresponds to firing a production in the original grammar,
so there is a production right hand side such as a or QR associated with the node. The

TR AT i et et AR Luns s 4 AL a0 S e 5w T b e et st 8 06 a5 St st ran Ak on 1 n A im0 A S

1

72 GENERATION AND RECOGNITION

traversing procedure will either output the terminal character a, or traverse both descen- :
dants to produce subrtrings for @ and R, in which case there are two additional ficlds L _ 3
and I, in the drastic node; they are the number of labels given to Q and R respectively. ‘ '

v > Production Used

Figure 4.2 A Drastic Node

Recall that when j special characters are expected in the output, the top level call te
the traversal procedure begins with a link: d list of ¢ through j. At a drastic nodes with
descendants, the procedure splits the current list of labels into two lists for the descendents.
If a box opcerator is applicd to cither nor.*orminal then the smallest label is moved to the
designated group before the splitting process.

At a drastic node the integer ¢ carried by the traversing procedure is divided into three
integers, one for each descendant, and one to control the splitting of the labels:

¢y + cmod v,
¢+ cdivy, (4.5)
¢ +— c¢mod v;)

3~ cdivy.

Using that portion allocated for splitting, s, a list of labels can be partitioned into two
groups of sizes a, and b:

while a + b > 0 do
ifs< (““”b) then

a-1
begin
add the next label to the a list;
a—a-1,
end
else
begin
oo (2, 119);
add the next label to the b list;
be—b-1;

end

e B T B e R P

SELECTION AND GUNERATION AT RANDOM 73

a by

a)'

TQTIP aeby ja Leby o ga-h) Ly s) e Ve . b : . ; .
Sinee (%)) -,y .) we can partition the range 0. (.)} into two parts, one

The loop preserves the invariant that a « blabels remain to be processed.and 0 € ¢ < (

corresponding to putting the first label into the a gronp, in which ease the remmaimng
problen is to partition o - 1+ b labels into groups of size a - 1and b and s is appropriately

in the range {ﬂ. (. ! \ ")) Larser values of & correspond to putting the first label in the b

. . . . b .
gronp. and so s will be in the appropriate range after subtracting ("n lx). In this way the
invariant is preseeved,

We now have all the ingredients for the walk procedure:

procedure walk(tree e, labels)
case treet node type of
trivial:

if ¢ < treet left’ value then

- call walk(tree® deft. ¢, labels)

clse
call walk(tree® right.c — tree’ left! . value, labels);

drastic:

begin

if the production is of the form P -+ a then output a

else
begin
use (1.5} to separate ¢ into ¢, ¢, and s
if a box appears in the production then

remove the smallest integer from labels:
use « to spht labels into left lahels and right labels:
if a bex appears in the production then
return the smallest Iabel to the appropriate group;

call walk{tree left. e left labels);
call walk(treet.right.c,. right_labels):
end

So the walk procedure is a straightforward byb:id of tree search and tree traversal.
Trivial nodes are “searched™ and drastic nodes are “traversed™ in order to generate labelled
terminal strings.

Of course an obvious question remains: how «lo we construet a walk structure for a
wiven family of combinatorial objects? The answer is surprisingly simple: we use the algo-
rithm of the preceding section for counting the unmber of objects and replace the additions
and maltiplications in the computation with structural additions and multiplications that
pateh together picees of walk structure.

B T TV EE S i el st s e Ve e meer B L U L TS SV ST 4 W s R e e b e 2 2ttt tn v ind

i GENFRATION AND RECOGNITION

A tiivial node results from the addition of two nodes, either drastic or trivial. The
value ficld of the new node ix the sum of the value fields of the combined nodes:

oty

Figure 4.3 Summing Two Nodes -

s

A drastic node is the result of the multiplication of two nodes:

Sesc

Figure 4.4 Multiplying Two Nodes

Most of the fields of the drastic node (such as the production used and the number of
labels going left and right in the split) arce provided by the context of the multiplication.
The split factor § is computed according to the number of labels going left and right. and
the value field of the new node is the product of § and the values of the two descendants.

In this way. the connting procedure of the preceding section can be adapted to compile
a walk structure. To improve the walk structure, it is advantageous to postpone summing
the nodes together as deseribed above. Instead of immediately creating a trivial node
wlienever a sum occurs in the counting procedure, we first colleet all those nodes that will
eventually be part of the same sum. Once the sum is complete, a balanced walk structure
can be built from the collected nodes for gnaranteed logarithmic search time on a single
search. or Huffinan’s algorithm [Knuth 1973: Section 2.3.4.5] can be used to build a walk
structure that is optimal when averaged over ail possible searches.

i . 0 il e Nt e 5 et 4 e s 2 3 o R LT A A B b e o v e iar M Ao R el

ENUMERATION 75

The running time and space requirements for the selection and generation at ran-
dom alvorithns fall into two classes: pre-computation to create a waik structure from a
grammar, and poxt-computation to generate objects using the walk structure. The cost of
pre-computation is based on the counting alrorithi described carlier. The time required
remains O{nm*4). and because each multiplication and addition creates new data structure,

the space required is also O{nm?4).

Post-computation requires a bit more reasoning: since cach drastic node corresponds
to the firing of a production in the grammar and since each traversal generates a string
of the grammar. the traversal will visit as many drastic nodes as there are productions
contnibuting to the final string. f the final string is of length L then we can use at most |
productions generating terminal symbols. and at most I productions of the form P — QR,
since each ponterminal must generate at least one terminal. So the string generation can
require at most O(1) productions, and the traversal can visit at most O(1) drastic nodes.

The traversal of a drastic node involves a splitting operation on a label list (O{m)
time) and the time necessary to find the next drastic node. Between drastic nodes thereis a
network of trivial nodes produced by the summation in the counting algorithm. Since there
are at most O{m¥) terms summed together (the convolition of two d-dimensional series)
we expect to visit at most O(m9) trivial nodes, or if the balancing technique described
above is used. O(d In m) trivial nodes.

Altogether the time necessary to generate a string is O(l{(m + dln m)).

4.1.3 Enumeration

Our next and last problem within the generation category is the systematic enumera-
tion of ail members of a combinatorial family. For a simple solution to this problem we can
nse the selection alzorithm of the preceding section, sequencing the algorithm through all
possible values. However, since most of the differences hetween the jthand (5 + 1)st mem-
bers of combinatorial fanmlies are confined to small regions of their strings. it is senscless
to completely regencrate the strings. The nnnecessary regeneration is avoided hy loading
the generated characters into a bulfer, and then rensing all but the right end of the buffer
for subxequent strings.

In the preceding section we developed a walk algorithm that produced a single string
from an integer input. In this section the alzorithm that enumerates all strings is called
all-walks; it will occasionally use the walk algorithin as a subroutine.

All-walks uses the data structure compiled for walking, but it treats the nodes differ-
ently. At a trivial node the all-walks procedure calls itself recursively on both descendants
(recall that the walk procedure chooses only one descendant). At a drastic node the pro-
cedure uses a sed of nested loops to cover all possibilities:

if the production is of the form P =+ a then append a to the buffer, and output the buffer
else the production is of the form I’ - QR, so ...
for all possible splits of the label list do

begin

forn «- 0 tov; - 1do

b S s s

70 GENERATION AND RECOGNITION

begin
call walk(tree? deft.n. left lubels). appending the results to the buffer;
call all-walks on the right descendant;
end
end

4.2 Recognition Problems

We now shift onr attention from the generation of strings to the recognition of strings
supplied as input. There are two algorithims. The user can supply a string and a grammar
and ask the system to verify that the grammar derives the string. This is accomplished
with the accepting algorithin. There is also a ranking algorithm that carries this process
one step further; it returns an integer that uniquely identifics the string within the fawily
generated by the grammar.,

4.2.1 Accepting

Accepting a string is a straightforward application of dynamic programming, a tech-
nique that miny authors have used to parse context free langnages. We assume that the
input string is of length I and we construct for every nonterminal an (I + 1) x (I + 1)
upper triangular matrix with cntries initially false. The (1, 7) entry will be set truc if the
nonterminal can derive the picce of string between locations 1 and j - 1 inclusive.

There is one other (I + 1) x ({ + 1) upper triangular matrix M, called the minimums
matrix. whose (7, j)th entry contains the smallest label between locations £ and 7 - L
The minimums matrix is casily computed with the recurrence M(i, j) = min(M(i.j - 1),
M(@E+1,5)).

The nonterniinal matrices are more diflicult to compute. Their entrics are processed
in increasing order of the difference j ~ 1. Initially the near diagonal entries (#,4+ 1) arc sct
true for any nonterminal with a production P — a, where a matches the inpnt at location
t. The upper right corners are computed last. A true en'ry in the upper right corner of
the start nonterminal matrix indicates a successful derivation.

For a given location in the matrices. (¢, 7). all matrices are computed together, using
the safe order among nonterminals deseribed already in Section 4.1.1. When a nonterminal
P with production I’ — QR is processed. the production is matched with the input string
between ¢ and j - 1. with the understanding that Q and R can derive variable length
strings. so we must try all possible midpoints m in the range § < m < j - 1. An outline of
the algorithm follows.

for s — 2 to length(input) do
for 1 « 1 to length(input) — s + 1 do
begin
J—1i+s
for cach nonterminal P in safe order do
begin

2por>ecr

o

RANKING 7

P{i,j) « false
for cach production possibility P — QR do
form—i+1toj-1do
if Q(i,m) and R(m, j) and check box operator then
begin
P(i,j) — true
goto found
end
found:
end
end

The prescnce of a box operator adds an additional check to the procedure. If a box is
on a nonterminal, such as Q, then each time the Q matrix entry (¢, m) is tested for true
we also check if M(i.m) = M(i, 7). Equality insures that, if the production were used to
derive the string between § and j - 1, then the smallest label would appear in the proper
location.

The running time of the accepting algorithin is O(n(l+1)3), where is the length of the
input string. and n is the number of nonterminals. Each of the O(n(l + 1)?) matrix entries
treated by the algorithm can require an O(!) string match in the inner loop; together these
derive the time bound.

4.2.2 Ranking

The ranking algorithin makes use of the following data structures. The first two are
modifications of those used for accepting:

1) Nonterminal substring matrices. P(i,7). Previously these contained true or false,
depending on wheter the nonterminal could derive the string between ¢ and 7 — 1. Now
they contain false or the rank of the derived string. We assume that the grammar is
unambiguous; ambiguous grammars would require a set of ranks.

2) Minimums matrix, M(1, 7). This used to contain the minimum label in the string
between ¢ and 7 - 1. Now cach entry contains an ordered list of all the labels used between
t and 7 - 1. with the smallest label first.

The third data structure was uscd before in counting:

3) Nonterminal count matrices, . These contain the total number of derivations
that start with the nouterminal P, and have a final string with characteristic vector p.

4) Production off-et matrices, (P — QR)qe. This is a new data structure that will
be explained shortly. Each production has a matrix of integers that is addressed by two
characteristic vectors, q and r, corresponding to nonterminals on the right side of the
production.

FRCRERPER VI S Pe SE I

o o e B S AR 1 1

T b by Y A e arne T A T A4 S v e ks 3 e R St e

-1
(s 9

GENUERATION AND RECOGNITION

Note that there are two distinetly different matrices associated with each nonterminal.
The substring matrix will always be two dimensional (since it is addressed by two locations
in the string). and will be denoted with the indices following the nonterminal character:
(1. 7). The count matrix has a variable number of dimensions d depending on the number
of characters eritical to the counting. It is denoted with subseripted indices Py or with
a vector as a subseript Pp. The subseripting distinguishes count matrices from substring
matrices.

The aceepting algorithm of Section 4.2.1 is used as a basis for the ranking algorithin

of this section. Instead of setting P(i.j) true in the inner loop of the code, we actually
compute the rank by the formula

P(i.j) «~ (s Qq+ Q(i.m)) Re + R(m.j) + (P = QR)qe . (4.0)

where most of the above formula needs turthor explanation. In essence. the formula inverts
the operations of Section 4.1.2 for selection. Whereas equations (4.3) divided the control
integer ¢ into three parts by modular arithiictie. Equation (4.6) above assembles three
parts. s Q(i.m). and R(m. j) into one integer.

In Section 4.1.20 » was used to split a list of labels into two groups. Here s is computed
hy merging two groups of labels: those uzed in the Q substring (found in M (2. m)) and
those used in the £ substring (found in M (. 5)).

s« 0:
until a and b lists are empty do
if a)0q4 < Dleyq then
begin
move the a list head into the output
a—a-1
end
else
begin
et (05
move the b list head into the output
be—b-1
end

This acconuts for all of cquation (4.6). save the last. offset, terin {P — QR)qe whose
purpose is to invert the trivial nodes of Section 4.1.2. The trees of trivial nodes between
dristic nodes result from a suning process: when trivial nodes are used for selection, o
search based on the control integer ¢ guides the progrinu throngh the trivial nodes to a
particular drastic node. and the firing of a specific production. A subrange of the possible
values of e will all land at the same drastic node. In the inverse direction. we have computed
an integer for the firing of a production and we must add an offset for the base of the
subrange. The offset allows for the contribution of other terms in the sum.

Offset matrices can be computed from the walk structure by applying the procedure
compute_offsct{ Fp.0) to cach entry of the nonterminal connt matrices:

o e A NSt 1 R B kA 2 A AoV e e

a T o

A Bba i £ i i Bt s S ks S0 ol R e S [P i i N s v S b e S i > 4 Kt it i D o e Nt 1ot i T

OVERALL EVALUATION 79

- procedure compute_offsct(tree, sum)

case treet.node _type do

; trivial:

. begin

call compute_offset(left descendant, sum);
sum «— sum+ value v at current node;
call compute_ofJset(right descendant, sum):

end
drastic:

- (production)((.har_ of 1st nonterm)(char. of 2nd nonterm) *~ St
‘ end :

This completes the inversion of the sclection algorithm. The running time is the same
as the accepting algorithm, O(n(l + 1)), since the only significant extra computation is
the merging of the lists, which is O(l) and so can be absorbed by the O(l) time used to
match strings. The major new complication of the ranking algorithm is the O(m?9) sized
offset matrices; it is ironic that the simplest nodes of Section 4.1.2 are the sourcc of the
most complication for the data structures of this section.

4.3 Overall Evaluation

For the reader interested in the details of implementation, there is a PASCAL version
of the counting, sclection. and generation at random algorithms in Appendix C, along with
a sample program cxccution. In the appendix the strict requirement for Chomsky normal
form is relaxed, to allow the user more flexiblity when entering grammars.

While theoretically the running times and space requirements of the algorithms are
all polynomial, the implementation experience highlights two limitations likely to cause
trouble:

1) The integer size of the host computer. Most famiiics of objects grow exponentially, and -
so oven the simplest counting algorithm must use large integers. Our memory cstimates
have been based on the number of integers, not on their total number of bits.

2) The memory requirements. This becotnes particularly acute when the number of critical
characters, d. exceeds two, so that the memory needed for selection or random generation
is worse than O(m*), where m is the maximum number of occurrences of any critical
character.

On a 36 bi* PDI-10 computer. with 256K words of virtual memory, and typical grammars
from Chap’er 2, these limitations where provoked when m =~ 12 and d = 3.

The algorithms of this chapter constitute a general purpose generation and recognition
system for combinatorial objects. For a specific problem, such as the generation of random
labelled trees, there are special purpose algorithms that will do better than the general
approach. If nccessary, trees can be generated in O(m) time rather than O(m?) time.

S o

Ak didad

80 GENCRATION AND RECOGNITION

Nevertheless the value of a general system is clear: rather than writing a computer program
for cach new problem, the user is designing a compact grammar. In fact it is casy to
describe combinatorial families with grammars of fewer than 8 productions for which no
special purpose algorithm exists. (See the sample run in Appendix C for trees counted by
leaves and single descendant nodes.)

On the other hand, there are frameworks for selection. enumeration, and generation at
random that are more general than the labelled grammars described above. Most notably,
Wilf has developed the idea of a path through a directed graph. each node having a variable
number of labelled outward arcs [Winr 1977 and 1978} Almost any combinatorial family
with a recurrence relation can be placed in one-to-one correspondence with a graph that
resembles the recurrence, and then such problems as generation at random and selection
are solved with general purpose algorithms on the graph.

The chicf distinction of the techniques of this chapter are that. rather than using a
single path through a graph. the paths arc allowed to fork at certain, drastic, nodes. While
this branching complicates the internal workings of the algorithms, it permits a greatly
simplified specification of the combinatorial family. and esscatially automates the one-to-
one correspondence between traversals of the graph and combinatorial vbjects.

In conclusion. it is worth asking a more reflective question: how can the polynomial
algorithms of this chapter generate objects from families that are inhcrently exponential
in size? This is possible because of the high degree of decomposability present in families
that can be described with labelled formal languages. When a nonterminal N appears
in a partially derived string it is treated in a manner that is independent of the size and
contents of the string. The nature of the enclosing string may affect the labels given to
the string derived from N. but the processing of N uses a arbitrary list of labels that can
contain any ordered subsct of the integers. This independence, apart from the splitting
of labels. makes special treatment for substrings unnecessary-- the walk structure can be
highly folded. with numerous pointers to small subproblems that are used repecatedly in
the construction of larger objects. This is the source of the savings that make it possible
to encode an exponentially sized family with a polynomial sized data structure.

CHAPTER 5

CONCLUSION

If we think of enumeration problems as falling into three broad classes: those pertaining
to unlabelled structures, those requiring a labelling with distinct labels, and those making
repeated use of labels, then the main result of this thesis is to extend the use of formal
languages from unlabelled to distinctly labelled problems.

Of course it is natural to ask why we bother with formal languages if we already have
combinatorial techniques to deal with these problems. There are several reasons. First, the
formal language approach is gencral. We have seen already in Chapter 2 that many of the
classic generating functions can be derived from labelled formal languages. Second, there
is an extremely close conuection between specification and enumeration. Once we have a
formal language description we obtain immediately an integral equation for an cnumerating
gencrating function. Formal languages have been extensively used for specification, often
in applications where enumeration is not important, so it is natural to tic a large class of
enumeration problems to a familiar descriptive tool.

In computer scicnce two major areas of application follow from the connection forged
between language theory and enumeration. We can use labelled formal languages as analytic
tools in the analysis of algorithms. Chapter 3 developed this idea on two sample problems,
the second of which is a new algorithm for tree searching that is intcresting in its own right
and should sce practical use in appropriate applications. Another major usc for labelled
formal languages is in controlling a general purpose system for counting, generation at
random, and enumcration of combinatorial objects. Chapter 4 describes the algorithms
necessary for processing labelled formal languages and appendix C includes a running
system of this nature. It is no longer necessary to write a different algorithm for each
combinatorial problem.

Perhaps the largest open arca of rescarch is in the intermediate problems that are
neither unlabelled nor distinetly labelled, but make repeated use of a collection of labels.
Mathematically these problems are nnitied by the Polya-Redficld theory of cnumeration
[Polya 1037] [Redficld 1927], but as yet there is no systematic way to generate the objects
of such a family; Burnside’s lemma stands between the counting and the construction of
family members. The work of R. C. Read is a significant step in this direction [Read 1978].
His approach eliminates many of the redundant famnily members before they are checked
for independence. But there are many fast, special purpose, algorithms (sce for example
appendix D) that challenge us to pursue this problem further.

o ittt e o e L e et

- e Gmaie ' : o i R i i b ol b i L

82 CONCLUSION

The algorithms of Chapter 4 secin ripe for asymptotic improvement of their running
times. Kung and Tranb have developed methods for the solution of polynomial equations
that improve the running time of the counting algorithm of Section 4.1.1 [Kung 1978]; it
would be nice to develop similar techniques for the selection and generation algorithins.
The aceepting problem is probably equivalent to matrix nmltiplication. aud there are likely
to be methods that work considerably faster on limited subsets of labelled languages. Both
these problems need further exploration. and the second problem suggests yet another open
area: the classification of labelled grammars. As yet there is no casy way to characterize
those languages requiring more sophisticated partial orders than those denoted with the
box operator, and to separate the various uses of the box operator. For example, the
grammars of Sections 2.3.1 (alternating pertnutations), 2.3.7 (Eulerian numbers), and 2.4.1 ‘ .
(left to right maxima and minima) probably all belong in the same class, and yet they use ‘ ”c
ihe box operator in a way that makes them clearly beyond the classificalion techniques of : '
ordinary formal languages.

T e———

Tt e T 00

T

APPENDIX A

BELL POLYNOMIALS AND LAGRANGE INVERSION

It is frequently necessary to obtain the cocfficients of a generating function that is the
composition of several well known functions. Suppose that h = f o g, where f, g and h
have Taylor expansions like)

z\
= [et} A.l
s § Ly (A1)
To compute h; in terms of f; and g; we use a matrix arrangement of the Fad di Bruno
formula introduced by Jabotinski [Jabotinski 1947]. Each function f has a matrix:

my, mi2 mys3
maa ma3 e
) (A.2)
mss3

where m;; is an exponential Bell polynomial of the coefficients of f:
mi; = Bji(f1, fa,-..). (A.3)

(Note the unfortunate transposition of indices.) These polynomials are defined implicitly

by the equation: :
.2
0 = Y Bi(fy, far)Y (A-4)

"
I J

from which we can derive various other expressions for Bj;:

B;i = 22 (s12)’

ky+hkythy+---=s
ky+3kg43ky+ =5

The first few polynomials are

h fr s ...
s . (A.6)
iy

By summing along the columns we obtain another family of polynornials that are associated
with Bell’s name:
Y;=) Bij. (A.7)
i>1

The top row of the matrix contains the the Taylor expansion of f and each successive
row can be computed with the following algorithm:

e Fomdoe s e ek ks

84 BELL POLYNOMIALS AND LAGRANGE INVERSION

for 7 — 1 to oo do
begin
myj — fj
fort « 2 to j do
begin
myy 0
a—j (a=(]) in the loop below)
forke—1toj—-1+1do
begin
m; — my; +afimiy ;i
a— a%}’;—
end
my; mgj/i
end
end

The most useful property of these matrices is given by the following theorem.

Theorem. If M; and M, arc the matrices of f and g then My = M;M, is the matrix
for the composition, h = f o g.

Proof:
. o ig(z)
ev/(9(=)) — ZMI("J)V‘%
3

Z M;(4, 5) ¥ (zj) £*9(2)
i

o ' gk (A.8)
=5 M) Mo (3. R) v 25
.7k)
. z"
= Z M},(i, k) y"“‘ .
k!
ik
For the Taylor expansion of h only the top row of M), need be coraputed:
Corollary. Ifh = fog then
(hlah21h3)'-')=(flvf?vf3,"')M9‘ (Ag)

Theorem. If a function f is given implicitly by h(f) = z then the matrx for f is

Miti) = T o (B2 7 (4.10)

LB bt ot St o e N v e o A e A ok oo i s i

85
Proof: [Comtet 1974; p. 149] Consider the product of My and My, where
M(i,7) = (:c’)h (A.11)
by cquation (A.5).
N -k
My(s,5)M; (k) = Z ((7) h()*—_T' ((- ’)())
i<k’ Y
(k- 1)! i1 . k- ()"‘
= - I h(z ‘ h'(z -7
(‘ — 1)! .'g;,z;k«) ()) (> (A.IZ)
(k- 1)!

= (i_l)! (k- I)Ikh(.’z)' k- lhl(z)

Corollary. (Lagrange inversion) If a function [is given implicitly by h(f) = z then
the cocificicnts in the power scries expansion for [are:

(=) (h(x)) (A.13)

Here are two frequently encountered matrices:

Stirling Numbers, 2nd Kind

(A.14)

g(z)=~In(1-1z)
HEH

M, = [g] Stirling Numbers, 1st Kind

As an example of the techniques of this appendix, consicer the following equations

from Scction 2.3.4:
T==zel

P = e-tl(1-T) \A.15)

S

86 BELL POLYNOMIALS AND LAGRANGE INVERSION

The coeflicient of 7 in P is the composition of three functions: %,
We can compute the matrix for T according to (A.10):

Mz(k,n) = %:: i)): (T %) enT

_ n"'l ﬂ—k
’(k—l)" '

The matrix for —In(1 - z) is given above,

. k
M. n{i- z)(]>k) = []])

—~Inl1 - z), and T(z).

(A.16)

(A.17)

and the first row of the matrix for %:— has a 1in the jth column. Multiplying these together

we obtain an expression for the cocfficients of P, given alrcady in equation (2.45):

i) =2 ()]

(A.18)

APPENDIX B

DIMINISHED TREE SEARCH

1. Arbitrary Median Tree Scarching. The following algorithm combines a tree
search with a linear scarch. When the trce search portion of the code hits a leaf, it branches
to additional code to search a small linear list of size at most 2¢. If insertions cause the
linear list to exceed size 2t then a new tree node is created and the list is split into two lists
of size t. The additional trec balancing provided by the median of 2¢ + 1 splitting improves
the running time of the algorithm.
define plus_inf = mazint
define half_siz2 =3 {Thisist.}
define median = half_stze + 1
define overflow = half.size + half.size + 2
program search (tty, outpu');
type link = Tnode; node_type - {'ree,list);
node = record case node_type of
tree: (left : link; key : integer; right : link);
list: (keys : array [1.. overflow — 1] of integer);
end;
var p: link; in_key: integer;
(Declare the Initialize Procedure 6);
{ Declare the Find or Insert Procedure 2);
begin initialize (p);
while true do
begin write(tty, “Key>,"); read(tty,in_key); writeln(tty, find(in_key,p));
end;
end.

SR B PR IR L WA A e, CAREs {1 Ko N g 0 DRI e n 7 T R R o NI T e e P e N

88 DIMINISHED TREE SEARCH

2. A Standard Tree Sear~li Algorithm.

The find procedure tikes a key, k, and a pointer to a tree, p. If k is in the tree, then
find returns true. otherwise fulse is returned. and k is inserted into the tree. Most of the
work is performed by the inner loop of a standard tree search algorithm. Since the loop
is included withont modification. any improvements that the programimer might design for
standard tree searching (such as hand coding the inner loop) will also be improvements to
diminished tree searching.

In order to activate the lincar list code without maodifying this loop the leaves of the
tree contain a dummy +oc key. a nil Ieft pointer, and a right pointer to a lincar list. The
standard tree search will find the nil pointer and take the “unsuccessful” loop exit.

define success = 1
define quit =2
(Declare the Find or Insert Procedure 2) =
function find (k : integer: p : link): boolean;
label success. quit;
var i.temp: integer: lcft list left_tree, right_list, right_tree: link;
begin while true do
with p{ do
begin if k > key then
begin p « right;
end
else begin if k = key then goto success
else if left = nil then (Search the right linear list, and goto success or quit 3)
else p — left;
end;
end;
success: find «— true;
quit: end

This code is used in section 1.

ARBITRARY MEDIAN TREE SEARCHING 89

3. Scarching a Lincar List.

The following code is a standard lincar list scarch. It is designed to work for arbitrary list
sizes {controlled by the half_size parameter). Even though this code is executed only once
for cach scarch, as opposed to Oflogn) passes through the loop in the preceding section,
the programmer should take care to make this run cfficiently; logn is close to a constant.

. In particular, the code below is NOT THE BEST approach to the problem since half_size

is fixed during execcution. It is better to choose a fixed half_size and unroll the 100p, as
exhibited in the special median of five variation following this code.

(Scarch the right linear list, and goto success or quit 3) =
begin i « 1; '
with right] do

begin while true do
begin if keys|i] < k then
begini 1+ 1;
end
else begin if keys[i] = k then goto success
else begin {insert k and Shift Subscquent Keys 4):
Jind « false; goto quit;
end;
end;
end;
end;
end
This code is used in section 2.

4. Inscrting a Key into a Linear List.
(Insert k and Shift Subscquent Keys 4) =
begin repeat temp «— k; k — keys[i]; keys[i] «— temp; s —i+1
until k = plus.inf;
if { = overflow then (Split the Linear List 5)
else keys[i] «— plus_inf;
end
This code is used in section 3.

90 DIMINISHED TREE SEARCH

5. Splitting a Lincar List.
A Incar list has grown to size 2 * half_size + 1 so it is split. The median clement becomes
a new tree node with right and left dummy nodes for sons. The dummy nodes each point.
to lists of half_size keys.
(Split the Lincar List 5) =
with pf de
begin left_list — right; key — left list1.keys[median);
left-listT.keys[median] «— plus_inf; new (right_list, list);
for ¢ — 1 to half size do
begin right list1.keys[i] + left list1.keys[median + i;
end;
right list1.keys [median| « plus_inf; new(left, tree); new(right, tree);
leftT.key « plus_inf; right1.key « plus_inf; left].left — nil; right1.left «— nil;
left1.right «— left list; right].right — right_list;
end

This code is used in section 4.

6. Initialize the data structure with a tree node and an empty list.

{Declre the Initialize Procedure 8) =

pro¢ :dure initialize (varp : link);
b.gin new(p, tree); pl.key « plus_inf; pl.left + nil; new (pl.right, list);
pl.right1.keys[l] «— plus_inf;
end

This code is used in section 1.

MEDIAN-OF-FIVE TREE SCARCH

1. Median-of-Five Tree Secarch.

dcfine plus_inf = mazint
define reps =5

program search{ity, output);
type link = Tnode; node_type = (tree,list); status = “a
record case node_type of
tree: (left : link; key : integer; right : link);
list: (nezt_free : status; a,b,c,d : integer);
end; ‘
var t: link; in_key: snteger,
heap_bottom, time, test_size, start, test_number, j, test_ezponent: mtcger,
result: boolean; (Initialize Procedure 2);
(Find or Insert Procedure 3);
begin mark (heap_bottom);
writeln(output, “Special Median of Five~,reps : 6, "L reps o0f each size);
test_size « 1;
for test_ezponent «— 1 to 14 do
begin test.size «— 2 s test_size; start «— runtime;
for test_number — 1 to reps do
begin initialize(t);
for j «— 1 to test_size do result — find(trunc(random(0) * (plus_inf - 1)),¢);
release (heap_bottom);
end;
time « runtime; writeln(output, “Test Size: °, test_size : 5, ", Time: *,
{time — start) : 7, * Time/Size: ", ((time — start)/test_size) : 8 : 4);
end;
end.

‘e’; node =

2. Initialize the data structure with a tree node and an empty list.

(luitialize Procedure 2) =
procedure initialize (vart : link);
begin new (¢, tree);
with ¢t do
begin key +— plus_inf; left — nil; new (right, list); right1.nezt free « “a°’;
end;
end
This codc is used in section 1.

91

LT e S S S A2 e o K IS

T

e 3T e Tl

s SRS

-

02

3. ASt

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

(Find or

DIMINISHED TREE SEARCH

andard Tree Scarch Algorithm.
success =1
quit = 2

a.a =101 { These labels will be used in the block move code }

a b = 102
a.c = 103
a.d = 104
a.e = 105
b.b =108
b.c = 107
b.d =108
b.e =109
c.c =110
c.d =111
c.e =112
d.d =113
d.e =114
e.e =115
wrap_up = 120

Insert Procedure 3) =

function find (k : integer; t : link): boolean;
lakel success.quit,a.a,a.b,ac,a.d,ae,b.b,b_c,b.d, b.e, ce,ed,ee,dd,de,e.e,

wrap_up;

var right_list: link; e: integer;

begin
witl

while true do
141 do

begin if & > key then t « right
else begin if k = key then goto success

else if left = nil then (Linear List Search 4)
else begin t — left;
end;
end;

end;
success: find «— true;
quit: end

This code

is used in section 1.

AT L RN, R

MEDIAN-OF-FIVE TREE SEARCH 03

4. Scarching the Accumulator. Since the scarch loop is unrolled, a binary scarch is easy
to implement:

(Linear List Scarch 4) =
with right{ do
begin case next_free of
‘a’: goto a.g;
‘b°: begin if k¥ < a then goto a_b;
if k = a then goto success
else goto b.b
end;
‘¢”: if k < bthen
begin if k < a then goto a_c;
if k = a then goto success
else goto b_c
end
else if k = b then goto success
else goto c.c;
‘d°: if k < b then
begin if k < a then goto a4.d;
if k= a then goto success
else goto b.d
end
else begin if k < ¢ then
begin if k = b then goto success
else goto ¢.d
end
else begin if k = ¢ then goto success
else goto d.d
end
end;
‘e’: if k < ¢ then
begin if k£ < b then
begin if k < a then goto a.e;
if k = a then goto success
else goto b_e
end
else if k = b then goto success
else goto c_e;
end
else begin if k < d then
begin if k = ¢ then goto success
else goto d_e
end
else begin if k = d then goto success
else goto e_e
end
end;
end;

04 DIMINISHED TREL SEARCH

(Shift Code 5);

(Split Code 8);

find «— false; goto quit;
end ’

This code is used in section 3.

3. Unrolled Block Move.

(Shift Code 5) =

ee: e+ k; goto wrap_up;
d.e: e — d;

d.d: d « k; goto wrap_up; L
ce: e« d; : ?
cd:deg :
c.c: ¢ — k; goto wrap_up;
boe: e+ d;

bd: dec

be:ceb

b.b: b k; goto wrap_up;
a.e: e +— d,

! % ad: d+ ¢

ac: c+ b - A
ab: b—gq j
a.a: a+— k;

This code is used in section 4.

6. Wrap up an unsuccessful search, splitting if necessary.
{Split Code 8) = :
wrap.up: if nezt free # “e” then nezt_free «— succ(nezt_free) » 1
elsec begin nezt_free «— “c”; new (righd_list, list); right_list1.nezt free — ‘e’ '
right list1.a — d; right list1.b — e;
with ¢] do
‘ begin key « rightl.c; new(left, tree); left1.key « plus_inf; left].left — nil;
: ; left1.right « right; new(right, tree); right{.key — plus_inf; rightt.left «— nil;

right1.right «— right_list,
end;
end;
This code is used in section 4.

£
i

Pl oy 2, o T e 0 T T Lo e
SRR AN " ik i i et b AR At S S 4 P

APPENDIX C

A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

1. Global Procedures and Parameters. ,

This program accepts a grammatical description of a family of combinatorial objects,
counts the number of specified objects, and generates objects at random or by rank within
the family. The grammar must be context frce; but it can contain additional “box”
operators to control the labelling of otie of the terminal characters, so that such things
as labelled trees and permutations can be described with grammars. The reader should be
familiar with the “box” operator.

There are three major divisions in the code. One section loads a grammar into the pro-
cramn’s data structures. Another section counts the number of derivations of the grammar
by a process that amounts to tensor multiplication, and at the same time generates a “walk”
structure. The third section traverses this walk structure and generates a spcecified string.
The data structures and low level support procedures are shared by all three sections of
code.

By convention, the single letter prefix of an identifier, e.g., z.variable_name, groups
together common variables and types. The following interpretations should help the reader:

input

symbol table
production possibility
nonterminal matrices
walk structure

label list

~E IV @ =

program general (tty);

type (Global types 8)

var {Global variables 3)
{ Global procedures 4)
{Matrix procedures 38)
{ Walk structure builders 45)
{ Grammar loading procedures 11)
{ Counting proccdures 49)
{ Walking procedures 58)
(Cominand processing 63)
begin tnitialize; commands;
end.

R AR 16 Pl 5L e LA N

L ks e vk b S bt o B i it A 03 e s e s omsatin” s ;s il ek Wi

s Hksmain

96 A GENERAL-PURTOSE GENERATOR OF COMBINATORIAL OBIECTS

2. Various parameters that control the capacity of the program are defined here.

define buffer_size = 140 { Maxitnum number of char on an input line }

define maz_prod symbols =7 {Symbols m a production possibility }

define mar_countable_terminals = 3 { Terminals critical in counting }

define maz_total = 12 { Total occurrences of cach critical char in the final string }

3. The mult array will contain the multinomial cocfficients, defined by

N (S S
mult[z‘]k] = ‘T}—'—i“'——

{Global variables 3) =

mult: array [~1..1,~1.. maz_total, - 1 .. maz_total] of integer;
Sce also sections 5, 9. 22, and 43.

This code iy used in section 1.

4. Initialization of the multinomial array. The recurrence

(i+j+k i+ i+k-1 (i+j+k—1) <i+j+k—1
i k)—(i—l j k>+ i -1 k)P k-l)
is used to create mult(i, 7, k].
(Global procedures 4) =
procedure initialize;
var i, j.t: integer;
begin for i — —1 to maz_total do
begin mult{0.4, 1] « 0: mult[0, -1,i] — 0; mult[1,4,~1] — 0; mult(1, —1,i] «— 0;
for j «— ~1 to maz_total do mult[-1,1,7] — 0;
end:
mult[0.0.0] «- I:
for t « 1 to maz_total do
fori—0to!l do
forj—0tot-ido
mult[i, 5, -1 - 7] — mult[i - l,j.t-—i—j]+mult[i,j—l,t-—i—j]+mult[i,j,t--i—-j—l];
end;
Sce also sections 6, 7, 23, 24, and 57.

This code is used in section 1.

5. Buffer and variables for input.
(Global variables 3) +=
i.buffer: packed array [1 .. buffer_size] of char;

i.scan.iline_size: integer; { Current and final positions in the buffer }
help_file: file of char; {A place to find help }

. ‘i«ineﬁm _ .

i
{
:

" vero o e sttt St 4

GCLODAL PROCEDURES AND PARAMETERS 97

6. Here are two fundamental operations. The macro capstal_letter is true when its
argument is a capital char and the function min returns its smallest parameter.

define capital letter (#) = (#2 A")A(# < °27))

(Global procedures 4) +=

function min (i, j : integer): integer;
begin if 1 < j then min
else min « j3;
end;

7. The procedure i_line reads a line of input into the global buffer, discarding blanks and
commas. If letters_only is true, the remaining characters must be capital letters. The last
character is stored at location s line_size in .duffer.

define start_over = 3

{Global proccdures 4) +=
procedure i_line(letters_only : boolean);
label start_over;
var new.scan, original_scan: integer;
begin start_over: if eoln(tty) then readin(tty); { A quirk of tty input}
read (tty, i_buffer : s_line_size); original_scan — 1; new.scan « 1;
while original_scan < i_.line_size do N
begin i_buffer[new_scan] — i_buffer[original_scan];
if —(i_buffer[original_scan] € [*y", ", °]) then
if letters_only A —(capital_letter (i.buffer [new_scan])) then
begin write(tty, “Error: capitalyletter(s) expected, try_again,...y");
goto start_over,
end
else new_scan — new_scan + 1;
original_scan «— original_scan + 1;
end;
t.line_stze «— new.scan - 1; i_scan «~ 1;
end;

TR g

a0 st At > e it 0wt bR A O N e S A WS i B S e

Tt e e AT B i G ol B e LA A M kb 8 o B e o e PR R et o s e Ao

i ey
& il

.

04 A GENVFRAL-TURVOSE GENERATOR OF COMBINATORIAL OBILCTS

& Global Duta Stiucturing.

The central data structure is 2 symbol table that is indexed by capital lotters, and
contamns mformation abont the letters need in the granunar. An entry for a nonterminal
‘i the syinbol table has several pointers. The first (prods) points to a list of production
possibilities. I, for example. N can be rewritten in three ways, §. T, and IV,

N-s|T|U,

then there will be a linked list of three p oright_side records hanging from the prods field of
the & entry in the symbol table. The second (matriz) points to a multidimensicnal array
that is indexed by the occurrences of characters eritical to the counting. Suppose the user
has declared X to be a special labelled character, and F and G to be countable terminal
symbols - W can find ont the number of strings derived from N that have 6 X's, 5 F's
and 4 (’s by looking at the (6.5.4) entry in the matrix associated with N in the symbol
table. If we were simply interested in conating these occurrences, then an integer entry
in this matsix wonld be adeguate. However, we also want to generate objects with the
specificd nubers of terminal symbols. This is accomplizhed with a walk structure that
will be deseribed Jater. Each matrix entry is a pointer to the walk structure (w . ptr). The ‘
integer count of derived objects can be found in the value ficld of the first walk structure : K;
node {w_node). "'

The additional ficlds of a nonterminal in the symbol table {appears_in. derives_empty,
preceded_by. and followers) are used to dertive the safe order of computation. This is
an order among nonterminals that will be deseribed in detail jater. The appears_in ficld
contains a linked list that points to all productions containing the nonterminal; it i3 a
reverse directory for the nouterminals. The boolean derives_empty will be set true once it
is determined that the nonterminal can derive a pseudo empty string (free of all countable
characters). The last step in the computation of the safe order is a topological sort of a
partial order among the nonterminals. This partial order is represent d by followers, a
linked list of all nonterminals that must follow in the partial order, and preceded by, an
integer counting the occurrences of the nonterminal in other followers lists.

(Global types 8) =
aptr = Talist: cptr = Telist; m_ptr = tm_azis: p_ptr = {p_right_side;
w_ptr = [w . node;
s-type = (undefined, uncount.term, count_term, labelled, nonterm);
s.data = record case status : s type of
labelled, count_term: (indez : integer);
nonterm: (prods : p ptr: matriz : m_plr; appears_in : a_ptr; derives_empty : boolean;
preceded_by : integer; followers : c_ptr);

sk R AR

end;
See also sections 10, 21, 35. 39, 44, and 56.

This code is nsed in section 1.

GLOBAL DATA STRUCTURING 00

9. Here is the actual symbol table (s_table) and an array containing those terminal
symbois critical to the counting (indez_symbols). The first clement of indez_symbols is
always the special labelled character, and number_tndices records the total number of entries
in tndex_symbols. Tor the exaniple of the preceding section, indez_symbols would contain
X, F and G and number_tndices would be three. The s_table is initialized before each new
grammar is input.

(Global variables 3) +=

inder symbols: array [l .. maz_countable_terminals] of char;

number_indices: integer;

s.table: array ["A° .. "Z°| of s_data;

10. The production possibility data structure.
Suppose that X is the labelled character, F' and G are counted terminals, H is an
uncounted terminal, and A and B are nonterminals. Th.a the production

N — XFA°GBGH

generates the following record:
1) string contains the characters XFAGDBGH and size is set to the length of string, in
this case 7.
2) sub_string includes only the nouterminals AD, and sub_size is set to 2.
3) brd is the location of the box operator in string. In the above production the third
character is boxed.
4) spectal bzd, first brd, and second_bxd are all cither zero or one, depending on whether
the special character, the rst nonterminal, or the second nonterminal are boxed. Here we
have first_bzd cqual to one. and the others zero.
5) adjust contains 1, 1, and 2, corresponding to 1 X. 1 F, and 2 G’s in the string. The
adjust array summarizes the effect of the production on the counts of indez_symbols in the
derived string.
6) p.ieft side is N.
7) contributors is a count of the number of characters in the string that are counted
terminals, plus the number of nonterminals that might contribute countable characters.
In this example contributors is 6.
(Global types 8) +=
characteristic_vector = array [l .. maz_countable_terminals| of integer;
p-right_side = record size: integer;

string: array [l .. maz_prod_symbols] of char;

brd, special bzd, first bed, second_bed: integer;

adyust: characteristic_vector;

sub_size: integer;

sub_string: array [1..2] of char;

pleft_side: char;

contributors: integer;

p-nezt: p_plr

end;

por

-

-

100 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJLCTS

11. Loading a Gramrmar.
define done_loading_grammar = 1
define flush_production = 2
define ‘ane_getting_productions =

|
<

(Grammar loading procedures 11) =
procedure loading_grammar;
label done loading grammar, flush_production, done_getting_productions;
var left_side. cur_char: char; p_possibility: p_ptr; s: integer;
{Local variables for computing the safe order 25)
(Local variables for loading matrix entries 54)
(Internal grammar loading procedures 20)
(Safe order procedure 33)
begin (Initialize for computing the safe order 26);
wriceln(tty), {Get declarations 12);
writeln (tty); (Get productions 14);
writeln(tty): (Compute the safe order 20);
done_loading_grammar: end;

This code is used in section 1.

LOADING A GRAMMAR 101

12. The declaration portion of loading a grammar.

The user is asked to classify tie letters of the grammar into four categorivs. A letteris a
nonternunal. or a terminal t% . s labelled. counted, or uncounted. Note that the user must
supply a =in. 7 labelled character, even for unlabelled gramiars, and that E is a built-in
cmpty string. (The user dev-n'L need to say E, but E's will not be output in a gencrated
string.)

{Get declarations 12) =

s_table[E"].status «— uncount_term; write(tty, "Labelled Character>>,");

i line(true);

while i_line_size # 1 do

hiegin write(tty,
‘Enter a_single labelled, character, (dummy if necessary)y...y");
iline(true);
end;
indez symbols (1] «— i_buffer|[1];
with s_table[i_buffer|l]] do
begin (Reject danble definitions by going to done_loading_grammar 13);
status — labellcd; indezx + 1;
end;
write(tty, "Coun* ed Terminai(s)>>,"); i.line(true);
if i line_size > wmaz_countable_terminals then
Le,in writeln(tty. “Error: the last two,lines have more than,",
mar. countable_terminals : 0, “ycharacters critical to the counting-);
goto done_loading_grammar;
end;
while i_scan < 1 line_size do
begin indez_symbols[i_scan + 1] — i_buffer [i_scan];
with s_table{i_buffer [i_scan]] do
begin (Reject double definitions by going to done_loading_grammar 13);
status «— count_term; index « i_scan + 1;
end;
§_scan +— {_scan + 1;
end;

number_indices — i_scan;

write (tty, “Uncounted Terminal (8)>>,"); i_line(true);

while i_scan < i_line_size do

with s_table(i_buffer [i_scan]| do ,
begin {Reject double definitions by going to done_louding.grammar 13);
status «— uncount_term; i_scan + i_.scan + 1;
end;

write (tty, "Nonterminal(s)>>,°); i.line(true);

while ¢_scan < t.line_size do

begin with s_table[i_buffer[i_scan]] do
begin (Reject double definitions by going to done_loading_grammar 13);
status — nonterm; matriz « nil; prods « nil; appears.in + nil;
derives_empty «— false; preceded. by «— 0; followers + nil;
end;

t.scan « t.scan + 1;

102 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

end;

This code is used in section 11.

13. Reject redefinitions of a character. The code below checks the previous definition of
a character to be sure that it is not being redefined. It always appears in the context of a
with s_table[i_buffer [i_scan]] do.

(Reject double definitions by going to done_loading_grammar 13) =
if status # undefined then
begin writeln(tty, “Error:,-, i_buffer [i_scan], ‘uisyalready defined);
goto done_loading_grammar;
end

This code is used in sections 12, 12, 12, and 12.

14. The production portion of loading a grammar.

Each line of input is scanned. The program expects the left hand side to resemble N —»,
followed by a right hand side consisting of production possibilities scparated with vertical
bars. The box operator appears as an up arrow in the input.

(Get productions 14) =
begin while true do
begin write (tty, “Production>>,°); t_line(false);
if (ibuffer(1] = “U) A (i_buffer[2] = ‘P°) then goto done_getting_productions;
(Scan the left hand side: goto Jlush_production if it has bad format 15)

(Scan the right hand side; goto done_loading_grammar if it has bad format 18)
fush _production: end;

done_getting_productions: end

This code is nsed in section 11.

15. The left hand side should consist of a single nonterminal followed by an arrow.

(Scan the left hand side; goto flush_production if it has bad format 15) =

left_side — i_buffer|1];

if ~(capital letter (left side)) then
begin writeln (tty, "Error ‘uproduction, ;should begin with a letter °);
goto flush_production:
end; .

if s.tablc(left side).status # nonterm then
begin writeln (tty, “Error:,,”, left_side, ", ,should, be_a_nonterminal %
goto Jlush_production;
end;

if i_buffer[2] # “+° then
begin writeln (tty, ’Error:u*uexpecteduafteru"Ieft_side); goto flush_production;
end;

This code is used in scction 14.

LOADING A GRAMMAR 103

16. The right hand side may contain several production possibilities separated by vertical
bars. The code below rejects small letters and excessively long strings.

(Scau the right hand side; goto done_loading_grammar if it has bad format 18) =
i.scan — 3; p.new(p_possibility);
while 1_scan < i_line_size do
begin case i_bufer[i_scan] of
“|*: (Finish a production possibility 19);
*=: {Box the previous symbol 17);
others: begin cur_char «— i_buffer|[i_scan];
if —~(capital_letter (cur_char)) then
begin writeln(tty, "Error: unacceptable charactery”, cur_char);
goto done_loading_grammar;
end;
with p_possibility 1 do
begin size « size + {;
if size > maz_prod_symbols then
begin writeln(tty, “Error: no_more thany,, maz_prod_symbols : 0,
‘ulettersyin a production possibility-);
goto done_loading_grainmar;
end;
(Include cur_char in the string 18)
end;
end
end; 1_scan — i_scan + 1;
end;
(Finish a production possibility 10);
This code is used in section 14.

104 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

17. An | indicates that the previous symbol is boxed. In the record for the production
possibility, bzd is set the the location of the boxed character in the string, and one of
Jirst.brd. second_brd, or special_bzd is sct to one, depending on which nonterminal or
terminal character is boxed.

{Box the previous symbol 17) =
with p_possibility T do
begin bzd « size;
if size = 0 then
begin writeln(tty, ‘Error: nothing,is being boxed"); goto flush_production;
end; ,
case s_table[string|[size]).status of 5
nonterm: case sub_size of &
1: first bzd « 1;
2: second_bzd « 1;
end;
labelled: special brd + 1;
others: begin writeln (tty, “Error:,°, string|size], ‘ucannot be boxed”);
goto done_loading_grammar;
end
end; L
end |
This code is uscd in section 16. :
18. Here is the code that adds a character to the string portion of a production possibility.

If the character is a nonterminal then it is also added to the sub_string. The instructions
below appear within the scope of a writh p_possibility do.

(Include cur_char in the string 18) =
string|[size] — cur_char;
case s_table[cur_char].status of
labelled. count_term: adjust(s_table[cur_char].indez] — adjust(s_table[cur_char].indez)+1;
nonterm: begin sub_size «— sub_size + 1;
if sub_size > 2 then
begin writeln (tty,
"Error: no more than, 2 nont erminalsuinuauproductionupossibility -);
goto done_loading_grammar;
end;
sub_string[sub_size] «— cur_char;
(Prepare the appearance of a nonterminal for safe order computation 27)
end;
undefined: writeln(tty, “Error:°. cur_char, ‘uisyundeclared”);
end;

This code is used in scction 16.

LOADING A GRAMMAR 105

19. Tinishing off a production possibility.
The scan has ercountered a vertical bar, or the end of the line so it is time to finish a
production possibility. There are two cases:
1) The production possibility is free of nonterminals, and =o the result of the production
can be entered directly in the matrix associated with the left hand side nonterminal at the
location of the adjust coordinates. (This part of the procedure will be considered later.)
2) The production possibility has nonterminals and so is linked into the prods list of the
left hand side nonterminal.
(Finish a production possibility 19) =
begin with p_possibilityt do
begin (Prepare the completion of a produciion for safe order computation 28);
if adjust[l] > 1 then
begin writeln(tty, “Error: only one,", indez_symbols|1],
‘wallowed in_a production possibility’); goto done loading grammar;
end;
if sub_size = 0 then (Lnter a string of all terminals 55)
else begin p.nezt «— s_table|left_side].prods; s_table[left_side].prods « p_possibility;
end; '
write(tty, "Loaded: 4", left_side, "L*y°);
for i — 1 to size do write(tty, siring[i], "y°);
writeln(tty, " with boxed _positiony”, bzd : 0);
end;
p-new (p_posstbility);
end

This code is used in scctions 16 and 18.

20. Here we initialize a production possibility by creating a new p_right_side and setting
the appropriate default values.

{Internal grammar loading procedures 20) =
procedure p_new(var p_possibility : p_pir);
var 1: integer;
begin new (p.possibility);
with p_possibility 1 do
begin bzd « 0; special bzd — 0; first_bzd «— 0; second.bzd — 0; size « 0;
sub_size — 0;
for i — 1 to maz_countable_terminals do adjust[i] — 0;
end;
end;
This code is used in section 11.

106 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

21. Computation of the safe order.
There are two kinds of lists used to compute the safe order. An a_list contains pointers
to productions, and a ¢_list contains characters representing nonterminals.

(Global types 8) +=
alist = record prod: p_ptr;
a.nezt: a_ptr
end;
c.list = record letter: char;
c.nezt: c_ptr
end;

22. The safe_order, once it is computed, is available throughout the prograrn.

(Global variables 3) +=
safe_order, scan_safe_order: c_ptr;

23. The decrement_test_zero function subtracts one from its operand and returns true
when the result is zero.

(Global procedures 4) +=

function decrement_test_zero(var operand : integer): boolean;
begin operand — operand — 1; decrement_test_zero «— (operand = 0);
end;

24. The norm function sums the components of a characteristic vector.

(Global procedures 4) 4+=
function norm(vector : characteristic_vector): integer;
var indez, temp_norm: integer;
begin temp_norm « 0,
for indez — 1 to number_indices do temp_norm « temp_norm + vector [indez);
norm « lemp_norm;
end;

25. During the safe order computation a depth first scarch will used to process the the
nonterminals. This is implemented with a stack called unprocessed.

(Local variables for computing the safe order 25) =

unprocessed,, new_unprocessed,, new_follower: c_ptr;

new_appearcnce: a_ptr;

tail_of_safe.order: c_ptr;

scan_s_table, being_processed: char;

This code is used in section 11.

26. Initially the stack and safe order are empty.
(Initialize for computing the safe order 26) =

unprocessed «— nil; safe_order « nil; ’
This code is used in section 11.

COMPUTATION OF THE SAFE ORDER 107

27. The fragment below builds a reverse directory for the nenterminals. It appears in
the code that is loading production possibilitics. The scan has encountered a nonterminal
cur_char and alrcady loaded cur_char into a p_possibility. In addition, a pointer to the
p_possibility is linked into the appears_in list of cur_char.

(Prepare the appearance of a nonterminal for safe order computation 27) =
new(new_appearance);
with new_appearance! do
begin prod — p_possibility; a_nezt « s_table[cur_char].appears_in;
end;
s_table|cur_char).appears_in — new_appearance;

This code is used in section 18.

28. If a production has no characters that are countable, and is free of nonterminals that
might derive countable characters, then contributors is zero. In this casc left_side is linked
on the unprocessed list— it will eventually be processed and marked with derives_empty set
true.

(Prepare the completion of a production for safe order computation 28) =
p-left_side «— left_side; contributors «— norm(adjust) + sub_size;
if contributors = 0 then
begin new(new_unprocessed);
with new_unprocessed] do
begin letter «— left_side; c_next +— unprocessed;
end;
unprocessed +— new_unprocessed;
end;

This code is uscd in section 19.

wyi

T Ty ——T T
I R i 50 B et St

108 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBIECTS

29. The safe order is for computing nonterminal matrices. Supposc there is a production
N — A, where N and A are nonterminals, and we are computing the (¢, 7. k) entries in all
the matrices. then the entry for A must be compnted before the entry for N. However,
if there are countable terminals, like X and F. added to the right side of the production,
N — XAF. then the computation of N needs an cntry from A with a smaller norm. If we
compute the entries in the order of ascending norm it is no longer necessary that A precede
N. So precedence depends on the presence of critical characters,

Precedence is furthier complicated by productions like N — AB, where N, A, and B
are all nonterminals. If B might derive a string withont countable characters (a pscudo
empty string). then A must precede V. For this reason the computation of the safe order
is accomplished in two phases. The first phase identifies those nonterminals that derive
psendo empty strings. Then the precedence relations are apparent and the second phase
can topologically sort the nonterminals into a linear order that is consistent with these
relations.

{ Compute the safe order 20) =
(Mark those nonterminals deriving pseudo empty strings 30);
write (ty. ’Theufollowingunonterminalsucanuderiveupseudouemptyustrings)
for scan_s_table «- "A” to *Z° do
with s_table[scan_s_table] do
if (status = nonterm) A derives_empty then write(tty, "u”, scan_s_table);
writeln{tty). {Count the number of predecessors for cach nonterminal 31);
(Topologically sort the nonterminals into the safe order 32 R
write(ty. “The_safe order,is 'u’)s scan_safe_order — safe_order;
while scan_safe_order # nil do
with scan_safe ordert do
begin write (tty. *y°. letter); scan_safe_order «— c_next;
end; '
writeln (tty);

This code is used in section 11,

COMPUTATION OF THE SAFE ORDER 109

30. The nonterminals that can derive pseudo empty strings are identificd as follows: when
a grammar is loaded auy production free of conntable terminals and nonterminals causes its
left hand side to be placed on the unprocessed stack. The loop below removes these “cmpty
derivers™ from the stack and, using the appears_in lists, finds all occurrences of the empty
derivers in other productions and diminishes the contributors felds of these productions.
When a contributors ficld is reduced to zero another enipty deriver has been found, so it is
pushed ou the unprocessed stack.

i

{Mark those nonterminals deriving pscudo empty strings 30) =
while unprocessed # nil do
begin being_processed « unprocessed | .letter; unprocessed «— unprocessed 1.c_nezxt;
with s_table[being_processed| do
begin derives_empty «- true;
while appears_in # nil do
with appears_inf.prod1 do
begin if decrement test_zero (contributors) then
begin new (new_unprocessed);
with new_unprocessed} do

end
This code is used in section 29.

begin letter — p_left_side; c_nezt « unprocessed; ; 1
end;
unprocessed «— new_unprocessed; -
end;
appears_in «— appears.int.a_nezt;
end;
end;

it e

AT e ek Tl o N0 SR d VRt] 5 ¢ B0 4B e S g s e b s o8 il g ma v W e S A da i aie A G N b A e ewecy 4 h et © VT < e e B Wl Bt 1S O Sk A e e 5 o e i e A et ekt i A Y ek
r

110 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

31. Once the cripty derivers are identified we can find all the precedence relations. If A
precedes B then one is added to the preceded by ficld of B and B is linked in the followers
list of A.
define add_scan_to(#) =
begin new{new_follower),
with ncw_follower? do -
begin letter «— scan_s_table; c_next «— s_table[#].followers;

end; .
s_table[#].followers + new_follower; preceded by « preceded by + 1; T
end o
(Count the number of predecessors for each nonterminal 31) = s
for scan_s_table « "A" to "2 do 1

begin with s.table[scan_s_table] do
if status = nonterm then
begin p_possibility « prods;
while p.possibility # nil do
with p_possibilityt do
begin if norm(adjust) = 0 then ,
case sub_size of o J
1: add_scan_to(sub_string[1]); o
2: begin if s_table|sub_string[1]].derives_empty then
add_scan_to (sub_string[2]);
if s_table[sub_string|2]].derives_empty then add_scan_to(sub_string(1]);
end
end;
p-possibility « p_possibility .p_nezt;

end; i

end;
end

This code is used in section 2.

32. The topological sort starts witi a scan of the symbol table, in order to find nonter-
minals with zero preceded_by ficlds that are ready to be placed in the safe order.

(Topologically sort the nonterminals into the safe order 32) =
for scan_s_table «— "A" to "Z2° do
with s_table|[scan_s_table] do
if status = nonterm then
if preceded.by = 0 then put_in_safe_order(scan_s_table);
{Check that all nonterminals arc in the safe order 34);

This code is used in section 29.

.

COMPUTATION OF THE SAFE ORDER 11

33. When a nonterminal is moved to the safe order the preceded by ficlds of each of its
followers are diminished by one. If any of these fields reach zero more items are added to ‘
the safe order. i 3

(Safe order procedure 33) =
procedure put.in_safe_order (now_safe : char);
var ncw_safe_erder: e_ptr;
: begin new(new_safe_order); new_safe_order.letter «— now_safe;
if safe_order = nil then safe.order «— new_safe_order
else tail_of safe_orderi.c.nezt «— new._safe_order;
tatl_of_safe_order «— new_safe_order; tail_of safe order.c.nezt «— nil;
with s_table[now_safe] do ,
begin preceded_by — —1; .
while followers # nil do -
with followerst do S
begin if decrement_test_zero(s.table[lstter].preceded_by) then
] put_in_safe_order (letter);
4 Jollowers « c_next;
; end;
end;
end;
This code is used in section 11.

s

34.

(Check that all nonterminals are in the safe order 34) =
for scan_s_table — “A° to °Z° do
with s_table[scan_s_table] do
begin if status = nonterm then
if preceded_by # —1 then
begin writeln (tty, “Error: there must be a cycle in the grammar°);
goto done_loading_grammar;
end;
end
This code is used in section 32.

S, ey

R L R P

e SRR L S r e o it RN 1 s L s e S R el 1 on R SRR oA 3 e

1?2 A GENERAL-PURTOSE GENDRATOR OF COMBINATORIAL OBIECTS

35. Matrix Data Structure and Procedures.

The data structure and code that fellows implements matrices with a variable number
of dimensims. There are number indices dimensions all of size maz.total + 1. Each
nonterminal will have one of these matrices containing pointers to the walk structure.

A matrix consists of a series of one dimensional axes. The lower dimensional (interior)
axes contain pointers to other axes; only the highest dimensional (exterior) axes hold the
contents of the matrix.

Normally access to the matrix requires a pointer dereference for each dimension. To avoid
this, the array is addressed with a m_coord that has extra ficlds to retain these pointers.
If the same location is accessed. or if a change is made only in the highest dimension then
the m_coord will still hold the relevant pointers.

An m_ptr is a pointer to an m_azis.

(Global types 8) +=
m_azis_type = (interior, exterior);
m.azrts = array (0 .. maz_tofal] of
record case m_azxis_type of
interior: (nert level : in_ptr);
exterior: (entry @ w_ptr)
end:
m_coord = record symbol: char; {This m_coord accesses the matrix for nonterminal
symbol }
int: array (1 .. maz_countable_terminals] of integer; { Integer coordinates }
ptr: array [1.. maz_countcble_terminals] of m_ptr {Pointer cocrdinates }
end;

36. Allocation and initialization of matrix axes.
(Matrix procedures 36) =
procedure m_new_aris(i: integer; vara : m_ptr);
var j: integer; w: w_plr;
begin new(a);
if ¢ = number_indices ther { This is the highest dimension. }
for j « 0 to maz_total do
begin new(w, trivial);
with w! do
begin value « 0; w_nert — nil;
end;
allj].entry « w;
end
else {This is an interior dimension. }
for j « 0 to maz_total do aj[j].nert level — nil;
end;
Sce also sections 37, 40, and 41.

This code is used in section 1.

P

e

ot

©.

Sl adon

MATRIX DATA STRUCTURE AND PROCEDURES 113

37. This is a preliminary access procedure. It allocates unprobed axes if necessary,
initializes them, and stores helpful poiuters in the m_coord record. The m_locate procedure
must be applied to an m_coord before any m_access operations.

(Matrix procedures 36) +=
procedure m_locate (var m : m_coord);
var i: integer;
begin with m do
with s_table [symbol! do
begin if matriz = nil then m_new_azis(1, matriz);
ptr(l] « matriz;
for i «— 2 to number_indices do
begin if ptr[i — 1)1[int[i — 1]].nezt.level = nil then
m_new_azis (1, pir[t — 1]1[int[i — 1]].nezt_level);
ptrlt] — ptr[i — 1]t[iat[i — 1]].nezt level;
end;
end;
end;

38. Accessing the entries of a matrix.

We assume that m_locate has been applied, so that loc contains the proper pointers.
We then nced only use ptr{number_indices] to find the highest dimensional axis, and
int [number_indices] to find the proper entry in this axis.

define m_access (#) = #.ptr[number_indices|[#.int [number_indices)].entry

39. To keep track of which characteristic vectors have been computed, there is a global
matrix of booleans called done_already. The next fow modules implement this boolean
matrix in a manner similar to the preceding modules.

(Global types 8) +=
m_b_ptr = Tm_b_azis;
m_b_azis = array [0 ., maz_total] of record case m_azis_type of
interior: (next_level : m_b_ptr);
exterior: (entry : boolean)
end;

40. Allocation and initialization of the boolcan matrix axes.

(Matrix procedurcs 38) +=
procedure m_b_new_azis(i : integer; vara : m_b_ptr);
var j: integer;
begin new(a);
if + = number_indices ta.en { This is the highest dimension. }
for j — 0 to maz_total do atlj].entry « false
else { This is an interior dimension. }
for j — 0 to maz_total do allj].nezt level — nil;
end;

o e sy

S5 <t TR B SR S IR S 0 O NGII 5 e, - g e,

114 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

41. Preparing to access the boolean matrix.

(Matrix procedures 368) +=
procedure m_b_locate (var m : m_coord);
var i: integer;
begin with m do
begin if done_already = nil then
begin m_b.new_azis (1, done_already); b_ptrs[l] «— done_already;
end;
for 1 — 2 to number_indices do
begin if b_ptrs(i — 1]1[int[i — 1)].neztlevel = nil then
m.b_new_azis (1. b_ptrs{i — 1]1[int[i - 1]].nezt_level);
b.ptrs[i] — b_ptrs[i — 1]7[int[i — 1]].nezt_level;
end;
end;
end;

42. Accessing the entries of the boolean matrix.

define m_b_access (#) = b_ptrs[number_indices]1(#.int [number_indices]).entry

43. The boolean matrix is a global variable. There is also a global array of pointers to
access the matrix.

(Global variables 3) +=

done_already: m_b_ptr;

b-ptrs: array [1.. maz_countable_terminals] of m_b_ptr;

e g g

SELECTOR WALK STRUCTURE AND CONSTRUCTION PROCEDURES 115

44. Selector Walk Structure and Construction Procedures.

The walk structure is built by count using the procedures w.multiply, w_sum, w.build
and w_single_multiply. 1t is used by walk to quickly generate a string specified by an integer
selector. The total number of strings derivable from a node of the walk structure is recorded
in the value ficld of the w_node. When walking the structure, selector should aways be in
ihe range 0 .. value — 1. There are two types of nodes, trivial and drastic. The trivial
nodes have left and right sons. They are formed by the sumniing process, and so the value
field is the sum of the values of the two children. The walk procedure will turn either left
or right at a trivial node. The drastic nodes are the result of the multiplication process.
At a drastic node the walk procedure must (in an intertwined order):

1) Output the terminal symbols in the production used, p_used, and
2) Walk the structures for both the nonterminals, firs_walk and seco_walk.

A w_ptr is a pointer to a w.node. The w.nezt ficld is used to link together nodes that

have been summed until they are built into a balanced structure.

define w_value(#) = #1.value

(Global types 8) +=
w_type = (trivial, drastic);
w_node = record value: tnteger;
w_nezt: w_plr;
case state : w_type of
trivial: (left, right : w_ptr);
drastic: (split_factor : intcger; p_used : p_ptr; firs_specials, seco_spectals : integer;
firs_walk, seco_walk : w_ptr)
end;

116 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

45. The multiply procedure

The w.multiply procedure creates a drastic w.node. The value field is essentially the
product of the two value ficlds of the nonterminals in p_used, with the countable symbols
divided according to first.loc aud second_loc. This product iz modified by splst_factor
because of the exponential nature of the series in the special Jabelled character. For example,
suppose X is the labelled character. and we arc multiplying

(s%) (55):

]

then a typical term of the product will be

i+ X't
(s

The split_factor plays the role of the binomial coefficient, although below we are using the
multinomial cocflicients because there are really three contributions to the product: the
number of X's in the production itself, adjust [1]: the number of X’s in the first nonterminal,
Jirs_specials; and the number of X's in the sccond nonterminal, seco_specials. When the
walk procedure traverses this w_node it will have a list of labels that it intends to assign
to terminal X's. The split_factor counts the number of ways of dividing the list into three
parts. If any of the three parts are “boxed” then 1 is subtracted from the corresponding
index. Algebraically, this is a consequence of the shifting of the exponential scries with the
differentiation and integration operators. Combinatorially, this corresponds to fixing the
location of the smallest label in the separation process.

(Walk structure builders 45) =
procedure w.multiply (var product : w_ptr; p_possibility : p_ptr;
first loc. second_loc : m_coord);
begin with product 1, p_possibility1 do
begin p_used «— p_possibility; firs_specials ~— Sirst_loc.int[1];
secospecials — sccond loc.int(1]; split_factor — mult|adjust[1] — special_bzd,
Jirs_specials — first_bzd. seco_specials — second_bzd);
Sirs_walk — m_access(first loc); seco.walk « m_access (second_loc);
value « split_factor x w_value(firs_walk) + w_value (seco_walk); w_nezt « nil;
end;
end;
Sec also scctions 46, 47, and 48.

This code is used in section 1.

.,.u.“.m...:m,,

SELECTOR WALK STRUCTURE AND CONSTRUCTION PROCEDURES 117

46. The multiply procedure with a single operand.
The w_single_multiply routine is identical to w.multiply except that the production has
only one nonterminal. ’

{ Walk structure builders 45) +=
procedure w_single_multiply (var product : w_ptr; p_possibility : p_ptr; first_loc : m_coord);
begin with product, p_possibilityt do
begin p_used — p_possibility; firs_specials «— first_loc.int[1];
split_factor — mult|adjust[1] — special_bzd, firs_specials — first_bzd,0];
firs_walk — m_access(first_loc); value «— split_factor » w_value(firs.walk);
seco_specials + 0; w_next « nil;
end;
end;

47. The sum procedure.

The eventual purpose of the w_sum procedure is to produce a w.node with two descen-
dents, left and right, and a value field equal to the sum of the values of the two descendents.
However, in order to optimize the data structure for later walks, the w_nodes are first linked
together by their w_nezt pointers in an accumulator list. Later on, the w.butld procedure
will create a tree.

(Walk structure builders 45) +=

procedure w_sum (var accumulator : w_ptr; new : w_ptr);
begin new{.w_nezt «— accumulator; accumulai.: — new;
end;

48. A balanced tree builder.
This procedure builds a baianced tree from a list by repeatedly combining the first two
nodes and reinserting them at the end of the list.

(Walk structure builders 45) +=
procedure w_busld (var accumulator : w_ptr);
var tail, jotned: w_ptr;
begin tail «— accumulator;
while (tasl.w_nezt # nil) do tasl « taslf.w_nezt; {Find the end of the list }
while accumulator {.w.nezt # nil do
begin new (joined, trivial); joinedt.left + accumulator;
joined1.right «— accumulator{.w_nexzt;
joined1.value «— accumulator{.value + accumulator 1. w_next.value;
tasl T.w_nezt «— joined; tasl «— joined; tailT.w.nezt « nil;
accumulator «— accumulator {.w_nezt{.w_nezt;
end;
end;

118 A GENLERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

49. Counting P1 .cedures.

The procedure count is called with a loc parameter that contains a nonterminal and a
characteristic vector. indicating that the user desires an accounting of the derivations that
start with the nonterminal and have a final composition equal to the vector.

If loc is not alre: dy computed, the code below builds up a solution to loe by first
computing all vectors with norm less than loc. In the loop below total ascends through norm
sizes. For a fixed value of total the inner loop distributes total among the components of the
characteristic vector target_loc, subject to the constraint that no component can exceed its
corresponding component in loc. Thus we generate all target_loc’s that are componentwise
less than loc, in ascending order of their norms.

define next_total = 10

define next_production = 11

P, o

{ Counting procedures 49) =
: function count (loc : m_coord): integer;
1 label nezt_total, next_production;
var partial_sums: array [0 .. maz_countable_terminals] of integer;
chunk,i. col_1, col_2. total, sub_total: integer:
target_loc. delta_loc, first_loc, second_loc: m_coord;
scan_productions: p_ptr;
accumulator, new_drastic: w_ptr;
begin m_b_locate(loc); { Check donz_already to see if loc needs computing }
if -~m_b_access(loc) then
begin new (new_drastic, drastic); new_drastict.w_nezt — nil;
sub_total « 0; partial_sums|[0] « 0;
for col_1 « 1 to number_indices do
begin sub_total « sub.total + loc.int{col_1]; partial_sums|col_1] — sub_total;
target_loc.int[col_1] « 0; '
end;
for total «— 0 to partial_sums|[number_indices] do
begin sub.total « total; col_1 « number_indices;
while true do
begin while sub_ivtal > 0 do {Disperse sub_total leftwards }
begin chunk « min(sub_total, loc.int|col_1]); target_loc.int[col_1] — chunk;
sub_total «— sub_total — chunk; col_.1 — col.1 — 1;
end;
(Compute all entries at target_loc 50)
if sub_total = total then goto nezt_total;
while (target_loc.int[col_1 + 1] = 0) V (sub_totul = purtial_sums|col_1]) do
{ Scan rightwards to find a column to diminish }
begin col.1 — col_1 + 1; sub._totul — sub_total + target_loc.int[col_1};
target_loc.int{col 1] « 0;
if sub_total = tota! then goto nest_total;
end;
target loc.int[col_1 + 1] + target_loc.int[col_1 + 1] — 1; sub_total — sub_total -+ 1;
end;
nezt_total: end;
end;

COUNTING PROCEDURES 119

count +— w_value(m_access(loc));
end;
Thia code is used in section 1.

50. Tor a particular target_loc, the code below scans the nonterminals in safe_order, and
for cach nonterminal it scans the production possibilities.

(Compute all entries at targetloc 50) =
m_b_locate(target.loc); {Check done_already to sce if target_loc necds computing }
if —~m_b_access (target_loc) then
begin m_b_access(target_loc) «— true; scan_safe_order «— safe_order;
while scan_safe_order # nil do
with scan_safe_order do
begin target_loc.symbol « letter; m_locate(target.loc);
accumulator «— m_access(target_loc); scan_productions «— s_tableletter].prods;
while scan_productions # nil do
with scan_productions do
begin (Compute the cffect of a particular production 51);
scan_productions +— p_nezt;
end;
w_build (accumulator); m_access(target_loc) «— accumulator;
scan_safe_order — c_nezt;
end; -
end;
This code is used in section 49.

120 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECT3

51. At this point we are ready to compute the contribution of a single production.
Suppose the production is

N — XFA"GBGH

and we are counting derivations that start with N and have final composition (6,5,2). The
code below subtracts the adjust vector contained in the production possibility, (1,1,2),
obtaining a delta_loc vector of (5,4,2). I7 the p_possibility has only one nonterminal, then
all of (5,4.2) must be contributed by this nonterminal. Hcere, however, there are two
nonterminals, so (5,4, 2) is divided in all possible ways, as described in the next section.

(Compute the effect of a particular production 51) =
with target_loc do
begin {Subtract the counts of characters for this scan_productions from the totals }
for i «— 1 to number_indices do
begin delta_loc.int[i] « int[i] — adjust[i];
if delta loc.int[i] < 0 then
goto nezt_production { There is no way to use this possibility }
end,;
delta_loc.symbol «— sub_string|1]; m_locate(delta_loc);
case sub_size of {0: p_possibilities without nonterminals are entered directly into
the matrix }
1: begin w-single-multiply(new_drastic,scan_productions, delta_loc);
(If new._drastic is nonzero then add it to the accummlator 53);
end;
2: (Compute with two nonterminals 52)
end;
nezt_production: end;

This code is used in section 50.

Wt

COUNTING PROCEDURES 121

52. Computing the contribution of a production possibility with two nonterminals.

The example of the preceding section has two nonterminals, A and B, in the production
possibility that together must contribute (5,4,2) characters to the derived string. The
code below divides delta_loc (which is (5,4, 2) in this example) into first_loc and second_loc
by a counting mechanism. For cach partition, the number of strings derived from A is
multiplied by the number of strings derived from B, and the results of all partitions are
summed together. Multiplication and summation are performed by w_multiply and w_sum,
which are closely related to ordinary multiplication and addition, but take into account the
exponential nature of the generating function and the construction of the walk structure.

The code below is the inner loop of the program.

(Compute with two nonterminals 52) =
begin first_loc « delta_loc; second_loc.symbol — sub_string|[2];
for { « 1 to number_indices do second_loc.int[i] — 0;
m_locate (sccond_loc); w.multiply(new_drastic, scan_productions, first_loc, second_loc);
(If new_drastic is nonzero then add it to the accumulator 53);
col.2 — number_indices;
while col_2 > 0 do
begin first_loc.int[col_2] « firstloc.int[col 2] — 1;
if first.loc.int[col.2] < 0 then
begin first_loc.int[col_2] — delta_loc.int[col_2]; second_loc.int[col_2] « 0O;
col.2 + col 2 - 1;
end
else pegin second_loc.int[col_2] — second_loc.int[col 2] + 1;
if col_2 < number_indices then
begin m_locate(first_loc); m_locate(second_loc);
end;
w_multiply (new_drastic, scan_productions, first_loc, second_loc);
(If new_drastic is nonzero then add it to the accumulator 53);
col_2 «— number_indices;
end;
end;
end

This code is used in section 51.

53. Reclevant new_drastic nodes are added to the walk structure.

(If new_drastic is nonzero then add it to the accumulator §3) =
if new.drastic1.value # 0 then
begin w_sum (accumulator, new_drastic); new(new_drastic, drastic);
new_drastic T.w_nezxt « nil;
end

This code is used in scctions 51, 52, and 52.

- .
T E RN

f : 122 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

54. Addendum to the grammar loading code. Here we define variables for the next
module.

(Local variables for loading matrix entries 54) =

loc: m_coord,;

new_drastic, already: w_ptr;

This code is used in section 11.

54, Wnen a production is free of nonterminals, it is entered directly into the entry of
the matrix for the nonterminal on the left side of the production. The code below fits in
tuc context of a with p_possibility do. The adjusé array of the p-posstbility describes the
makeup of the production; so it is used to address the matrix.

(Enter a string of all terminals 55) =
with loc do

begin symbol — left_side;

for ¢ - 1 to number_indices do int[i] — adjust]s];

m_locate(loc); new(new_drastic, drastic);

with new.drastict do
begin value « 1 w.next — nil; split_factor « 1; p-used «— p_possibility;
Jirs_specials — 0; seco_spectals « 0;
end;

already «— m_access(loc); w_sum(already, new_drastic); m_access (loc) « already;

end

This code i3 used in section 19.

36. Label Lists.

Now we have completed the procedures that build the data structures, and we are ready
to use them. The top level call to the walk procedure begins with a list of the integers
1 .. n. Subscquent calls to walk will have fraginents of this list, the fragmentation being
performed by the split procedure. Eventually each integer in the list will become a label
for one of the special characters.

{Global types 8) +=
Lptr = TLlist; llist = record lab: integer;
Lnezt: lptr;
end;

57. Append a label to the end of the list, using the pointer lend to quickly find the last
item of the list.

{ Global procedures 4) +=
procedure Lappend(var Lbegin, l_end . new : Lptr);
begin if Lbegin = nil then lbegin — new
else lend{.lnezt — new;
new[.Inext «— nil; Lend — new;
end;

PROCEDURES TO WALK AND PRODUCE A STRING 123

58. Procedures to Walk and Produce a String.

According to the value of selector, the procedure split separates a list of labels, 1, into
three lists, o1, 02, and 08 with sizes nl, n2, and ng. The multinomial coefficients govern
the splitting process.

(Walking procedures 58) =
procedur~ split (i : Lptr; selector,nl,n2, n8 : integer; var ol , 02,09 : L_ptr);
var cur,o0l_end, 02 end, 08 end: Lptr;
begin 0l « nil; 02 « nil; 08 « nil;
while ¢ # nil do
begin cur + 1; 1 « 1.l nezt;
if selector < mult[nl ~ 1,n2,n8] then
begin l.append (ol , ¢l end, cur); nl « nl - 1;
end
else begin selector «— selcctor — mult[nl — 1,n2,n8};
if selector < mult[ni,n2 — 1,n3] then
begin lLappend (02, 02.end, cur); n2 «— n2 - 1;
end
else begin selector — selector — mult{nl,n2 — 1,n8};
if selector < mult[n1,n2,n8 — 1] then
begin l_append (08, 08.end, cur); n§ — ng - 1;
end
else write(tty, “Error: selectoryinappropriategin, split,procedure. °);
end;
end;
end;
end;
Sece also section 59.

This code is used in scction 1.

<

» ’ he (\ N ‘.\‘ .
124 A GENERAL-PURTOSE GENERATOR OF COMBINATORIAL OBJECTS

59. The actual walking procedure.

The walk procedure traverses a data structure that is prepared by other portions of the
program (count, w.sum. w.maltiply. ...). The purpose of walk is to generate a string from
the grammar; selector specities the string to be generated, and labels is a list of integers
that are to be attached to the occurrences of one particular terminal symbol.

The wali, procedure first dispenses with the trivial nodes by branching lefl. except when
selector is larger than the value of the left son, in which case the left value is subtracted
from sclector and the right branch is taken.

Eventually a drastic node is reached — these are processed in the next module.

(Walking procedures 58) +=
procedure walk (cur : w_ptr; selector : integer; labels : Lptr);
var share, so_far,i: integer; the boz,spec_label, firs_labels, seco_labels: Lptr;
begin while cur{.state = trivial do
if selector < cur{.left].value then cur «— curt.left
else begin selector «— selector — curl.left1.value; cur — cur {.right;
end;
with cur?, curt.p_used? do
if value > 0 then ('Traverse a drastic node 60)
end;

60. A drastic node indicates that a production is to be applied, so the procedure must
divide the labels between the special character and the nonterminals in the production.
Part of selector is removed (by mixed-radix arithmetic) and used to govern the division
process. If anything is boxed then the smallest label is stripped from the beginning of the
list, saved in the_bor. and then returned to the appropriate list after the split procedure
divides the labels.
(Traverse a drastic node 60) =
begin if bzd > 0 then {Rcmove the smallest label }
begin the_boz + labels; labels — labels 1.1 next;
end;
split (Iabels, selector mod split_factor , adjust[1] — special _bzd, firs_specials — first_bzd,
seco_specials — second_bzd, spec_label , firs_labels, seco_labels)
selector «— selector div split_factor;
(Put the smallest label into the appropriate list 61);
{Output the selected string 62);
end;

1

This code is used in section 59.

ol

s >y e 1

(SO

JE A R STV

e, DA I S bbb e VDl 5 4 o e e B A e i

PROCEDURES TO WALK AND PRODUCE A STRING 125

61. The smallest label, the_ boz, is linked at the begining of the list correspondiag to the
box operator in the production.

(Put the smallest label into the appropriaie list 61) =

if special_brd > 0 then
begin the_ bor (.l .next « nil; spec_label — the boz;
end:

if first_bxd > 0 then
begin the_bozl.lnext «— firs labcls; firs labels «- the_boz;
end;

if second._brd > 0 then
begin the box{.l.next «— seco.labels; seco_labels « the boz;
end;

This code is used in section 60.

62. With the labels ready, the code below scans the producticn, outputting terminals and
calling itself rccursively for the nonterminals. The original selector is divided into three
parts, one part to control the split procedure (as we saw above) and two parts to give to
the recursive calls on the nonterminals in the production.

(Output the selected string 62) =
so_far — 0;
for 1 «— 1 to size do
case s_table[string[i]].status of
uncount_term, count_term: if string[i] # "E° then write(tty, string[s], "u");
labelled: begin write(tty, string[i], spec_label{.lab : 0, "y~);
end;
nonterm: case so_far of
0: begin share «— w_value(firs_walk);
walk {firs_walk, selector mod share, firs_labels); so_far — 1;
end;
1: walk(seco_walk, selector div share, seco_labels);
end;
end;

This code is used in section 60.

. e A o v e

1 S e AR an BN esvn 2 S e st S b et i b 25y bt 1 10 0 35S < A S a5 i e e S e ot s

s e e et

126 A GENERAL-PURTOSE GENERATOR OF COMBINATORIAL OBIECTS

63. Interacting with the user. The help procedure prints information for the user
by reading from the file help tzt and printing the contents on the fty. Parameters that are
casy to change are deseribed at the end of the help message.

o v, £

{ Command processing 63) =
procedure help;
: begin reset (help_file, "HELP . TXT[1,DHG] °); N
Lo repeat readin(help file,i buffer : i_line_size); writeln(tty,i_buffer : i_line_size); b
until eof (help file); S
writeln (tty. buffer size : 0, ‘ucharacterson agline of input);
writeln (tty, maz_prod_symbols : 0, *,symbols,in a_production possibility");
writeln (tty, maz.countable_terminals : 0, c
‘usymbols that are critical to,the counting”); R |
writeln(tty, maz_total : 0, R
’utotaluoccurrencesuofueachucriticalusymboluinutheuderivedustrlng‘); S
end; -
See also scction 64. o

This code is used in scction 1.

INTERACTING WITH THE USER 127

64. Command Line Processor.

This procedure consists of three nested loops at three different levels of the command
line processor. The outside loop prompts with >, and the label new_command marks the
end of this loop. The inner loops appear in subsequent modules.

With a few exceptions, the command line processor ignores all but the first letter of a
line of input.

define quit =5

define new_command =6
define new_size = 7
define new_selection = 8

(Command processing 63) +=
procedure commands;
label quit, new.size, new_command, new_selection;
var t, column, selector: integer; c: char; loc: m_coord;
limit, start.time, heap_bottom: integer; labels,new_ label: L ptr;
begin writeln(tty);
writeln(tty, ‘Please use capitals. The HELP command prints,instructions. ’);
mark (heap_bottom);
while frue do
begin writeln (tty); write(tty, "Command>_"); i.line(true);
case {_buffer[1] of
‘H: help; {Help command }
‘6*: {Grammar command }
begin for ¢ — “A" to “Z° do s_table[c].status «— undefined;
releuse (heap_bottom); loading_grammar; done_already + nil;
end;
*s”: {Process a size command 65);
‘U°: goto guit; {Up command }
others: writeln(tty, “Error: unrecognized,command ")
end;
new_command: end,;
quit: end;

65. Herce is the middle loop, it prompts for various structure sizes.
(Process a size command 65) =
while true do
begin (Prompt for the start symbol and the characteristic vector desired 6s);
start_time — runtime; { The uscr’s request is in loc }
m_locate(loc); writeln(ity, “There are, ", count(loc) : 0, "ystructures’);
writeln(Hy. "Runtime: ", (runtime — start_time) : 0, " msec,0f, CPU");
if count(loc) > 0 then (Walk through sclected strings until the uscr types UP 67);
new._size: end

This code is used in section 64.

%t

T . I TR AN S RS S S s AR i ey T N AR Sl S R ST EGN 1 Cr dk RIS ¥

128 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

66. The user specifies a starting symbol for the derivation, and gives the desired distri-
bution of characters for the terminal string,.

(Prompt for the start symbol and the characteristic voctor desired ¢8) =
writeln(tty): write(tty, “Start Nonterminal>>,"); tline(true);
if (buffer(1] = "U") A (i_buffer[2] = “P") then goto new_command;
if s_table{i_bufer[1]].status # nonterm then
begin writeln (tty, “Error: -, i_buffer 1], “Ushould, be_a, nonterminal %
goto new_size;
end;
loc.symbol — i_buffer[1);
writeln (tty, “Number,0f joccurrences of (Limit,=_,*, maz_total : 2,7
for 1 « 1 to number_indices do
begin write (tty, indez_symbols[i], =~ "s>>,°); read (tty, loc.int[i]);
while (loc.int[i] < 0) V (loc.int[t] > maz_total) do
begin write(tty. "Error: limit =", maz_total : 0, ",utryuagaing...y");
read (tty. loc.int|i]);
end;
end

This code is used in soction 65.

67. Hcre is the innermost loop: the user supplies an integer identifying a particular
structure, or makes a RANDOM request,

{ Walk through sclected strings until the user types UP 67) =
begin while true do
begin labels « nil; limit — loc.int|1];
for i — 1 to limit do ,
begin new (new_label); new.labelt.lab — limit — ¢ + 1; new_label {.lnext «— labels:
labels — new_label;
end;
writeln(tty): writeln (tty. “Which jone would, you, like? *);
write(tty. "Enter,[0,. -un=1]Lor RANDOM>>>,"); i_line(false)
case i_buffer|1] of
‘U”: goto new.size; {Up command }
‘R7: {Random command }
begin walk (m_access (loc), trune (random (0) s w.value(m_access(loc))), lubels);
end;
others: (Sclect a particular structure 68)
end;
new_selection: end;
end

1

This code is used in section 65.

INTERACTING WITH THE USER 129

68. The user has requested a specific structure by number.

(Select a particular structure 68) =
begin { Convert the contents of i_buffer to a number }
column « 1; selector + 0;
while column < i_line_stze do
begin if —(i_buffer[column] € [70" .. "9°]) then
begin writeln (tty, “Error: numeral, or command expected’);
goto new.selection;
end;
selector «— selector * 10 + ord (s_buffer [column]) — ord(°0°); column « column + 1;
end;
if (selector > 0) A (selector < count(loc)) then walk(m.access(loc), selector, labels)
else writeln(tty, "Error: selection out of_range’);
end

This code is used in section 67.

130 A GENERAL-PURPOSE GENERATOR OF COMBINATORNIAL OBJECTS

Index

a: 30, 40.

alist: 8, 21.

a.next: 21, 27, 30.

a_ptr: 8, 21, 25.

accumulator: 47, 48, 49, 50, 53.

add_scan_to: 31.

cdjust: 10, 18, 19, 20, 28, 31, 45, 46, 51,
55, GO.

already: 54, 55.

appears_in: 8, 12, 27, 30.

b.ptrs: 41, 42, 43.

begin: 1.

being_processed: 25, 30.

boolean: 7, 8, 23, 39.

buffer_size: 2, 5, 63.

bzd: 10, 17, 19, 20, 60.

clist: 8,21,

c.next: 21, 28, 29, 30, 31, 33, 50.

c.ptr: 8, 21, 22, 25, 33.

capital_letter: 6,7, 15, 16.

char: 5,0, 9, 10, 11, 21, 25, 33, 35, 64.

characteristic_vector: 10, 24.

chunk: 49.
col_1: 49.
col_2: 49, 52.

column: 064, 68.

commands: 1, 64.

contrihutors: 10, 28, 30.

count: 49, 59, 65, 68.

count_term: 8, 12, 18, 62.

cur: 58, 59.

cur_char: 11, 16, 18, 27.

decrement test_zero: 23, 30, 33.

deltaloc: 49, 51, 52.

derives.empty: 8, 12, 28, 29, 30, 31.

done_already: 39, 41, 43, 49, 50, 64.

done_getting_productions: 11, 14.

done_loading_grammar: 11, 12, 13, 16, 17,
18, 19, 34.

drastic: 44, 45, 49, 53, 55, 59, 60.

entry: 35, 30, 38, 39, 40, 42.

eof : 63.

eoln: 7.

exterior: 35, 39.

false: 12, 14, 40, 67.

Sirs labels: 59, 60, 61, 62.

firs_specials: 44, 45, 46, 55, 60.

firs_walk: 44, 45, 46, 62.

Jirst bzd: 10, 17, 20, 45, 46, 60, 61.

Jirst_ioc: 45, 46, 49, 52.

flush_production: 11, 14, 15, 17.

Jollowers: 8, 12, 31, 33.

general: 1.

heap_bottom: 64.

help: 63, 64.

help_file: 5, 63.

i 4,20,37 41, 64

ibuffer: B, 7, 12, 13, 14, 15, 16, 63, 64,
66, 67, 68.

iline: 7,12, 14, 64, 66, 67.

s.line.size: 5,7, 12. 16, 63, 68.

t.sean: 5,7, 12, 13, 16.

tndez: 8, 12, 18, 24.

indez_symbols: 9, 10, 12, 19, 66.

tnitialize: 1, 4.

int: 35, 37, 38, 41, 42, 45, 46, 49, 51, 52,
35, 66, 67.

integer: 3,4,5,0,7, 8,9, 10, 11, 20, 23,
24, 35, 36, 37, 40, 41, 44, 49, 56, 58,
59, 64.

interior: 35, 39.

J: 36, 40.

joined: 48,

l.append: 57, 58.

I_begin: 57.

lend: 57.

Llist: 56.

lnezt: 56,5

Lptr: 56, 57

lab: 56, 62,

labelled: 8, 12, 17, 18, 62.

labels: 59, 60, G4, 67, 68.

left: 44, 47, 48, 59.

left_side: 11, 15, 19, 28, 55.

letter: 21, 28, 29, 30, 31, 33, 50.

letters_only: 7.

limit: 64, 67.

loading_grammar: 11,

loc: 38, 49, 54, 55, 64

m: 37, 41.

m_access: 37, 38, 45, 46, 49, 50, 55, 67,
68.

m.azss: 8, 35.

m_aris_type: 35, 30.

m_b_access: 42, 49, 50.

7, 58, 60, 61, 67.
, 98, 59, 64.
7

64.
, 65, 66, 67, 68.

m_b_azis: 39.

m.b_locate: 41, 49, 50.

m_b.new_azis: 40, 41.

m.b.ptr: 39, 40, 43.

m_coord: 35, 37, 41, 45, 46, 49, 54, €4.

m_locate: 37, 38, 50, 51, 52, 55, 65.

m_new.azis: 36, 37.

m_ptr: 8§, 35, 36.

mark: 64. -

matriz: 8, 12, 37.

maz.countable_terminals:
35, 43, 49, 63.

maz_prod_symbols:

2,9, 16, 12, 20,

2, 10, 16, 63.

maz_total: 2, 3, 4, 35, 36, 39, 40, 63, 66.
min: 6, 49.
mult: 3, 4, 45, 46, 58.

new: 20, 27, 28, 30, 31, 32, 36, 40, 47/, 48,
49, 53, 55, 57, 67.

new_appearance: 25, 27.

new.command: 64, 66.

new_drastic: 49, 51, 52, 53, 54, 55.

new_follower: 25, 31.

new_label: 64, 67.

new_safe_order: 33.

new_scan: 7.

new._selection: 64, 67, 68.

new.size: 64, 65, 66, 67.

new_unprocessed: 25, 28, 30.

nezt_ level: 35, 36, 37, 39, 40, 41.

nezt_production: 49, 51.

nezt_total: 49.

nonterm: 8, 12, 15, 17, 18, 29, 31, 32, 34,
62, 66.

norm: 24, 28, 31.

now.safe: 33.

number_indices: 9, 12, 24, 35, 36, 37, 38,
40, 41, 42, 49, 51, 52, 55, 66.

nl: 58.

n2: §8.

nd: §8.

operand: 23.

ord: 68.

original_scan: 7.

others: 16, 17, 64, 67.

ol: 58.

ol_end: 58.

02: 58.

o2.end: 58.

INDEX 131

09: 58

03.end: 58.

pleft_side: 10, 28, 30.

p-new: 16, 19, 20.

p-nezt: 10, 19, 31, 50.

p-possibilities: 51.

p-possibility: 11, 16, 17, 18, 19, 20, 27, 31,
45, 46, 51, 55.

p-ptr: 8,10, 11, 20, 21, 44, 45, 46, 49.

p-right_side: 8, 10, 20.

p-used: 44, 45, 46, 55, 59.

partial_sums: 49. '

preceded.by: 8, 12, 31, 32, 33, 34.

prod: 21, 27, 30.

prods: 8,12, 19, 31, 50.

product: 45, 46.

ptr: 35, 37, 38.

put.in_safe_order:

quit: 64.

random: 67.

read: 7, 66.

readin: 17, 63.

release: 64.

reset: 63.

right: 44, 47, 48, 59.

runtime: 65.

s.data: 8, 9.

s.table: 9, 12, 13, 15, 17, 18, 19, 27, 29,
30, 31, 32, 33, 34, 37, 50, 62, 64, 66.

s_type: 8.

safe_order: 22, 26, 29, 33, 50.

scan_productions: 49, 50, 51, 52.

scan_s_table: 25, 29, 31, 32, 34.

scan_safe_order: 22, 29, 50.

seco.labels: 59, 60, 61, 62.

seco.specials: 44, 45, 46, 55, 60.

seco.walk: 44, 45, 62.

second_bzd: 10, 17, 20, 45, 60, 61.

second_loc: 45, 49, 52.

selector: 44, 58, 59, G0, G2, 64, G8.

share: 59, 62.

size: 10, 16, 17, 18, 19, 20, 62.

so_far: 59, 62.

spec_label: 59, 60, 61, 62.

special_bzd: 10, 17, 20, 45, 46, 60, 61.

split: 56, 58, 60, 62.

split_factor: 44, 45, 46, 55, 60.

start_over: 1.

32, 33.

132 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

Sample Exccution

The preceding program exccutes as follows:
Please use capitals. The HELP command prints instructions.

Command> HELP

Level in the command line processor is indicated by the number of > signs
following a prompt. At any level, the UP command shifts the system to a
higher level. A summary of top level commands follows:

>HELP Print this file

>UpP Exit from the program

>GRAMMAR Accept a grammar from the user

>SIZE Accept a specification from user for the size of objects to

be counted, selected, or generated at random.

After a GRAMMAR command, the program asks for a classification of input
letters. Letters can be designated as: 1) The special labelled character.
2) Terminals that are not labelled, but figure in the specification of the
problem size. 3) Terminals that will be ignored in the counting, but
printed in the final result. 4) Nonterminals. At each prompt the user
supplies one or more letters, separated, if desired, by spaces or commas.
E is the built in empty string. It should not be redefined.

Following the declaration of letters, the program will ask for
productions. It expects a vertical bar to separate production
possibilities, and an up arrow to indicate a box superscript. The UP
command, when issued at the beginning of a line of input, returns the
program to its top level.

In response to a SIZE command, the program asks the user for a start
nonterminal and then the number of occurrences of the special character and
each of the terminals declared to be important to the specification of
problem size. It reports the results of the counting and then asks the

user to select a particular object. The user can supply an integer or use
the RANDOM command for less predictable results.

Here is a sample program execution for labelled trees:

Please use capitals. The HELP command prints instructions.
Command> GRAMMAR

Labelled Character>> X
Counted Terminal(s)>>
Uncounted Terminal(s)>> L, H
Nonterminal(g)>> ST

Aok Ao

SAMPLE EXECUTION

Production>> T+XS

Loaded: T + X S with boxed position 0
Production>> S+ LT HS | E

Loaded: S + L TH S with boxed position 2
Loaded: § + E with boxed position 0
Production>> UP

The following nonterminals can derive pseudo empty strings: 8
The safe order is: T S

Command> SIZE

Start Nonterminal>> T

Number of occurrences of (Limit = 12)
X’'s>> 3

There are 9 structures

Runtime: 3 msec of CPU

Which one would yoﬁ like?

Enter [0 .. n-1] or RANDOM>>> 0
X1 LX2HLX3H

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> 1
X2LXt HL X3 H

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> RANDOM
X2 LXt HL X3 H

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> UP

Start Nonterminal>> T

Number of occurrences of {Limit = 12)
X’'8>> 10

There are 1000000000 structures
Runtime: 12 msec of CPU

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> R

XM LY3LXOLXSLX4LX7LX6 LXIOLX2HHHHHLX6HHHH
Which one would you like?

Enter [0 .. n-1] or RANDOM>>> UP

Start Nonterminal>> UP

Command> UP

Exit

133

i B Baiciaii it
el e s
-

134 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

- The following limits are built into the progranm: : %
- 1 special labelled character in a production possibility. -4
' 2 nonterminals in a production possibility. E

The following limits can be modified by recompilation:

140 characters on a line of input

7 symbols in a production possibility

3 symbols that are critical to the counting

12 total occurrences of each critical symbol in the derived string

s

SAMPLE EXECUTION 135

The next example uses a grammar to encode Fibonacci sequences. These are strings
of + (PS) and — (MS) signs having no consecutive minus signs.

Command> GRAMMAR

Labelled Character>>

Enter a single labelled character (dummy if necessary) ... Z
Counted Terminal(s)>> §

Uncounted Terminal(s)>> P N

Nonterminal(s)>> A B

Production>> A+ PS A | MSB | E

Loaded: A + P S A with boxed position O
Loaded: A + M S B with boxed position 0
Loaded: A + E with boxed position O
Production>> B+ PSA | E

Loaded: B + P S A with boxed position 0
Loaded: B + E with boxed position 0
Production>> UP

The following nonterminals can derive pseudo empty strings: A B
The safe order is: A B

Command> SIZE

Start Nonterminal>> A

Number of occurrences of (Limit = 12)
2'8>> 0

S's>> 2

There are 3 structures

Runtime: 3 msec of CPU

Which one would you like?

Enter [0 .. n-1] or RANDCM>>> 0
PSPS

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> 1
PSMS

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> 2
MSPS

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> UP

Start Nonterminal>> A

Number of occurrences of (Limit = 12)
Z's>> 0

S's>> 3

136 A GENERAL-PURPOSE GENERATOR OF COMBINATORIAL OBJECTS

There are 5 structures
Runtime: 1 msec of CPU

Which one would you like?
Enter [0 .. n-1] or RANDOM>>> UP

Start Nonterminald>> A

Number of occurrences of (Limit = 12)
2's>> 0

S's>> 4

There are 8 structures

Runtime: 2 msec of CPU

Which one would you like?
Enter [0 .. n-1] or RANDOM>>> UP

Start Nonterminal>> UP

/

<

e

N 3 1 b Bl G S i s Lt

ey e G
Rt A8 5050 e e AP 30 e S0

SAMPLE EXECUTION 137

This last grammar counts unordered, labelled trees according to their leaves and single
descendant nodes. Leaves are marked with an A, and single descendents are marked with

aB.
Command> GRAMMAR { i: '

Labelled Character>> X
Counted Terminal(s)>> A B
Unccunted Terminal(s)>> L H
Nonterminal(s)>> S T M

Production>> T + X §

Loaded: T + X S with boxed position O
Production>> S + A | BLTHI|I LT HM
Loaded: § + A with boxed position 0
Loaded: S + BL TH with boxed position O
Loaded: § + L THM with boxed position 2
Production>> M+ LTH | LT HNM

Loaded: M +» L TH with boxed position O
Loaded: M » L T HM with boxed position 2
Production>> UP

The following nonterminals can derive pseudo empty sirings:
The safe order is: S TM

Command> SIZE

Start Nonterminal>> 3

Error: capital letter(s) expected, try again ... T
Number of occurrences of (Limit = 12)

X's> 3

A's>> 2

B's>> 0

There are 3 structures

Runtime: 56 msec of CPU

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> O
X1 LX2AHLX3AH

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> 1
X2LX1 AHLX3AH

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> 2
X3LXI1 AHLX2AH

Which one would you like?

Enter [0 .. n-1] or RANDOM>>> UP

138 A GENERAL-PURI'OSE GENERATOJ OF COMBINATORIAL OBJECTS

Start Nonterminal>> T

Number of occurrences of (Limit = 12)
X's>> 8

A's>> 4

B’g>> 3

There are 58800 structures

Runtime: 2382 msec of CPU

¥hich one would you like?

Enter [0 .. n-1] or RANDOM>>> RANDOM
X8BLX7TLX3IBLXIBLXSAHRHHLX2AHLX4AHLIX6AHH
%hich one would you like?

Enter [0 .. n-1] or RANDOM>>> UP

Start Nonterminal>> UP
Command> UP

Exit
~C

vz o AR NN bl i i Wk L Bt s 7 N R i A o reuil et enldt il SR % Stk St i

“

Y, e

APPENDIX D

AN EXAMPLE OF POLYA-REDFI(EL.D ENUMERATION

1. Enumeration under the Cyclic Group. This program reads a number n from
the user’s terminal, then outputs all scquences of zeros and ones of length n that are distinct
under the cyclic group. Each vector output is lexicographically largest in its equivalence
class, and the vectors are output in decreasing lexicographic order. For example, when
n = 4, the outputs are 1111, 1110, 1100, 1010, 1000, 0000. The program also reports
the number of distinct elements found, which can be checked against Polya’s enumeration
formula:

1 Non/i
2, = ;Z¢(a)2 /s,
iin
Here ¢(1) is Euler’s phi function; it counts the number of integers less than i that are
relatively prime to 1.)

This program is cfficient in that it docsn’t scan the entire set of 2™ vectors of zeros
and oncs. Instead, the progrum uses an “incorrect” block move instruction to skip over
large pieces of the set. One nice consequence of this organization is that the test to reject
unwanted vectors is relatively simple (see module “Test and output if good” below).

define maz_size = 30
define quit =10
program cyclic(tty, output);
label quit;
type small_integer = 0 .. maz_size;
var (Variables used by the program 2)
begin while true do { The program will solicit numerous problem sizes }
begin write (tty, “Please Enter Problem Size,"); read(tty,n);
(Do it for n 3);
quit: writeln(2ty, “Total Number of Vectors Found, =,*, count : 3,
‘Lu<etr>Cuky . finish to see file’);
writeln (output, “Nu=",n : 4, "L Count =", count : 3);
end;
end.

110 AN EXAMPLE OF POLYA-REDFIELD ENUMERATION

2. The only data structure is an array vector of booleans which the User pereeives as an
array of 0/1.

(Variables used by the program 2) =

ne small_integer; {n, the problem size, is read from the terminal }

12 smallinteger; {tis a scratch variable, nsed for it ations through vector }

vector: array [small integer) of boolean: {the booleans will be printed as zeros or oncs }
reset: smallinteger: {the location of the rightmost true in vector }

nextto_copy: small_integer; {the next boolcan in vector to be copied }

count: tntcger: {connts number of inequivalent vectors found }

This code is used in scction 1.

3. The central loop of the program scans the array for the rightmost one, resets this one
to zero. and then copies the beginning of the array into the positions following the resct
onc. This operation is likely to generate an isomorphically distinct vector of zeros and ones.
(Doit for n 3) =
count « 0;
for i < 0 to n do vector[i] «— true;
(Print the array 4);
vector [n} «— false;
(Print the array 4);
while true do
begin (Find the rightmost one and reset it; goto quit if all zeros 5);
{Copy from the beginning of the vector to the zeros after reset 6);
(Test and output if good 7);
end;

This code is used in section 1.

{ Hercafter the last position in vector is fixed at zero }

4. Convert the boolean array vector to 0/1 and print the array in output,
(Print the array 4) =
begin for i — 1 ton do
if vector [i] then write(*1°)
else write("0°);
count « count + 1; writeln;
end;
This code is used in sections 3, 3, and 7.

5. The rightinost one in vector is set to z ... The variable reset points to the changed
location. When veetor[1 .. n] is all zcro, the otherwise uscless one entry at veetor [0] forces
an exit.
(Find the rightmost oue and reset it; goto quit if all zcros 5) =

resel «— n;

repeat reset « reset — |;

until vector [reset|;

if reset = 0 then goto quit;

vector [reset] «— false;

This code is used in section 3.

o e e

ENUMERATION UNDER THE CYCLIC GROUP 141

6. This is a block move instruction with origin 1 and destination reset + 1. It works
“incorrectly” in the sense that the origin area may overlap the destination area; since the
direction of copying is forward, one entry may be replicated several times. This is precisely
the behavior desired for the algorithm.

{ Copy from the beginning of the vector to the zeros after reset 8) =
nezt_to_copy « 1; 1 «— reset + 1;
while 1 # n do .
begin vector (i} « vector [nez!_to_copy); i « & + 1; nezt_to_copy « nezt_to_copy + 1; -
end;

This code is used in section 3.

7. The newly created vector is “good” if the next item in line for copying is one. This
item would normally land in the last entry of vector, which is permanently fixed at zero, so
we know that the first part of vector is lexicographically larger than the portion of vector
following reset.

In special cases we allow the next item in line for copying to be zero. This corresponds
to non-prime n where there is a repeated pattern in the array. The mod below checks for
this posibility.

{ Test and output if good 7) =
if vector[nezt_to_copy] V (n mod reset = 0) then
begin (Print the array 4)
end;

This code is used in section 3.

e AR A R SR SR N G5 285 98 i o+ ¥ty e g p

BIBLIOGRAPHY

[Aho 1972] Alfred V. Aho and Jeffery D. Ullman

The Theory of Parsing, Translation, and Compiling; Volume 1: Parsing
Prentice-Hall, 1972

[André 1879 D. André
Développements de séc z et de tang z.
Comptes Rendus

Hebdomadaires des Séances de L’Academie des Sciences 88:965-967,
1879

[Andrews 1971] George E. Andrews

On the Foundations of Combinatorial Theory V,
Eulerian Differential Operators
Studies in Applied Mathematics, 50(4):345-375, 1971

[Burge 1072] William H. Burge
An Analysis of a Tree Sorting Mcthod and
Some Properties of a Set of Trecs
First USA-JAPAN Computer Conference, 372-378, 1972

[Carlitz 1959) L. Carlitz and J. Riordan

The Number of Labeled Two-Terminal Series-Parallel Networks
Duke Mathematical Journal 23:435-445, 1059

[Cayley 1889) Arthur Cayley
A Theorem on Trees

Quarterly Journal of Pure and Applied Mathematics 23:376-378, 1889

[Chomsky 1963

[Comtet 1974]

[Cori 1970]

[Cori 1972

[Cori 1975]

[Euler 1755)

[Flajolet 1980]

[Frangon 1976]

BIBLIOGRAPHY 143

N. Chomsky and M. P. Schiitzenberger

The Algebraic Theory of Context-Free Languages

Computer Programming and Formal Systems,

Studies in Logic and the Foundations of Mathematics, 118-159
North-Holland, 1963

Louis Comtet
Advanced Combirnatorics: The Art of Finite and Infinite Expansions
Reidel, 1974

Robert Cori

Planar Maps and Bracketing Systems
Combinatorial Structures and Their Applications
Gordon Breach, 1970

Robert Cori et Jean Richard

Enumeration des Graphes Planaire a I’Aide

des Series Formelles en Variables Ncn Commutative
Discrete Mathematics 2:115-162, 1972

Robert Cori
Un Code pour les Graphes Planaires et ses Applications
Asterisque, 27, 1975

Leonhardo Eulero

Institutiones Calculi Differentialis cum eius vsu
In Analysi Finitorum ac Doctrina Serierum
AcademizxImperialis Scientiarum
Petropolitana, 1755

P. Flajolet, J. Francon, and J. Vuillemin
Sequence of Operation Analysis for Dynamic Data Structures
Journal of Algorithms, 1:111-141, 1980

Jean Frangon

Arbres Binaires de Recherche: Propriétés Combinatoires et Applica-
tions

R.A.LR.O. Informatique Théorique, 10(12):35-50, 1976

Lo

144 BIBLIOGRAPHY:

[Goldman 1978)

[Goldman 1979]

[Gross 1966)

|Harrison 1978]

[Jabotinsky 1047

[Joyal 1981)

[Knadel 1951]

[Knuth *]

Jay R. Goldman
Formal Languages and Enumeration
Journal of Combinatorial Theory, Series A 24:318-338, 1078

Jay R. Goldman

Formal Languages and Enumeration IT

Second International Conference on Combinatorial Mathematics
Annals of the New York Academy of Sciences 319:234-241, 1979

Maurice Gross
Application Géométriques des Langages Formels
International Computation Centre Bulletin 5:141-167, 1066

Michael A. Harrison
Introduction to Formal Language Theory
Addison-Wesley, 1978

Eri Jabotinsky

Sur la représentation de la composition de fonctions par un produit de
matrices. Application 3 Pitézation de e* et de e* — 1.

Comptes Rendus

Hebdomadaires des Séances de L’Academie des Sciences 224:323-324,
1047 ’

A. Joyal
Une Théorie Combinatoire des Séries Formelles
Advances in Mathematics 42(1):1-82, 1081

YValter Knédel
Uber Zerfallungen
Monatshefte fiir Mathematik 55(1):20-27, 1951

Donald E. Knuth

The Art of Computer Programming

Volume 1, Fundamental Algorithms, second edition, 1973
Volume 3, Sorting and Searching, second printing, 1075
Addison-Wesley

.

s AR I G TR 1 TSP AT SO S e G AT S A W}M AT M S S o O I Y

[Kuich 1970a)

[Kuich 1970b]

[Kung 1978]

[MacMahon 1892]

[Metronots 1953

[Moon 1970]

[Nijenhuis 1978]

[Polya 1937]

BIBLIOGRAPHY 145

W. Kuich

Enumeration Problems and Context-Free Languages
Combinatorial Theory and its Applications

Colloquia Mathematica Socictatis Janos Bolyai 4:729-735, 1970

W. Kuich
Languages and the Enumeration of Planted Plane Trees
Indagationes Mathematica 32: 268-280, 1970

H. T. Kung and J. F. Traub

All Algebraic Functions Can Be Computed Fast

Journal of the Association for Computing Machinery 25(2):245-260,
1978

P. A. MacMahon
The Combinations of Resistances
The Electrician 28(725):601-602, 1892

N. Metropolis and S. Ulam
A Property of Randomness of an Arithmetical Function
American Mathematical Monthly, 60:252-253, 1953

J. W. Moon

Counting Labelled Trees

Canadian Mathematical Monographs, No. 1
William Clowes and Sens, 1970

Albert Nijenhuis and Herbert S. Wilf
Combinatorial Algorithms for Computers and Cal:ulators
Academic Press, sccond edition, 1978

George Polya

Kombinatorische Anzahlbestimmungen fiir
Gruppen, Graphen und Chemische Verbindugen
Acta Mathematica, 68:145-254, 1937

146 BIBLIOGRAPHY

[Ramanujan 1919] Srinivasa Ramanujan

[Raney 1960]

[Read 1078]

[Redficld 1927]

[Riordan 1962]

{Riordan 1978]

[Salomaa 1978]

ISchroder 1870]

[Schiitzen 1961

Proof of Certain Identities in Combinatory Analysis
Proceedings of the Cambridge Philosophical Society, 19:214-216, 1019

George N. Raney
Functional Composition Patterns and Power Series Reversion
Transactions of the American Mathematical Socicty, 94:441-451, 1060

Ronald C. Read

Every One a Winner; or, How to Avoid Isomorphism Search
When Cataloguing Combinatorial Configurations

Annals of Discrete Mathematics, 2:107-120, 1978

J. Howard Redficld
The Theory of Group-Reduced Distributions
American Journal of Mathematics, 49:433-455, 1927

John Riordan
Enumeration of Linear Graphs for Mappings of Finite Sets
The Annals of Mathematical Statistics, 33(1):178-185, 1962

John Riordan
An Introduction to Combinatorial Analysis
Princeton University Press, 1078

Arto Salomaa and Matti Soittola
Automata-Theoretic Aspects of Formal Power Series
Springer-Verlag, 1978

Ernst Schroder
Vier combinatorische Probleme
Zeitschrift fir Mathematik und Physik 15:363-376, 1870

M. D Schiitzenberger

Some Remarks on Chomsky’s Context-Free Languages
Quartcrly Progress Report No. 63, October 1961,
Research Laboratory of Electronics,

Massachusetts Institute of Technology

BIBLIOGRAFHY 147

! ::; [Sedgewick 1975] Robert Sedgewick
v Quicksort
Ph.D. Disscrtation, Stanford, 1975

The Differential Method: or, a Treatise concerning
Summation and Interpolation of Infinite Series
Translated with the author’s approbation by Francis Holliday

' 3 [Stirling 1749] James Stirling

Printed for E. Cave at St. John’s Gate, London, 1740
[Tutte 1962] W. T. Tutte 3
A Census of Planar Triangulations E
Canadian Journal of Mathematics, 14:21-38, 1962 .
2

{Ullman 1980] Jeffrey D. Ullman
Principles of Database Systems 4
Computer Science Press, 1980 :

[Viennot 1976] G. Viennot
Quelques Algorithmes de Permutations
Société Mathématique de France, Astérisque 38-39:275-203, 1976

[Wilf 1977 Herbert S. Wilf
A Unified Setting for Sequencing, Ranking and Selection
Algorithms for Combinatorial Objects
Advances in Mathematics, 24:281-291, 1977

[Wilf 1978) Herbert S. Wilf
A Unified Setting for Selection Algorithms (II)
Annals of Discrete Mathematics, 2:135-148, 1978

[Williamson 1976] S. G. Williamson
On the Ordering, Ranking, and Random Generation
of Basic Combinatorial Scts
Lecture Notes in Computer Science, 579:309-339
Springer-Verlag, 1076

A et e i

148 BIBLIOGRATHY

[Zave 1976] Derek A. Zave

A Series Expansion Involving the Harmonic Numbers
Information Processing Letters, 5(3):75-717, 1076

e it Bt ot i i

——

